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FUNDACIÓN DE LA UNIVERSIDAD DE CANTABRIA PARA EL 
ESTUDIO Y LA INVESTIGACIÓN DEL SECTOR FINANCIERO 
(UCEIF) 

La Fundación UCEIF, promovida por la UC y Banco Santander, viene 
desarrollando proyectos de gran envergadura a lo largo de sus 10 años 
de historia, organizando su actividad en dos ámbitos de trabajo: banca 
y finanzas, por un lado, y actividad empresarial, con especial atención 
al emprendimiento, por otro. Ambas se articulan por medio de los dos 
centros creados en 2012: el Santander Financial Institute (SANFI) y el 
Centro Internacional Santander Emprendimiento (CISE). 

Santander Financial Institute (www.sanfi.org)

SANFI es el centro de referencia internacional en la generación, difusión 
y transferencia del conocimiento sobre el sector financiero, promovido 
por la UC y el Banco Santander a través de la Fundación UCEIF. Desde 
sus inicios dirige actividades de gran calidad en áreas de formación, 
investigación y transferencia: 

Máster en Banca y Mercados Financieros UC-Banco Santander. 
Constituye el eje nuclear de una formación altamente especializada, 
organizada desde la fundación en colaboración con el Banco Santander. 
Es Impartido en España, México, Marruecos y Brasil, dónde se están 
desarrollando la 21ª Edición, 18ª Edición, 10ª Edición respectivamente, 
además de clausurarse la primera promoción de la Edición Brasil. 
Recientemente se ha firmado el convenio de colaboración con la 
Pontificia Universidad Católica de Valparaíso y Santander Chile para 
que la Edición Chile.
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Formación In Company. SANFI potencia sus actividades para desarro-
llar la formación de profesionales del sector financiero, principalmente 
del propio Santander, destacando también su actuación dentro de otros 
programas, como el realizado con el Attijariwafa Bank.

Archivo Histórico del Banco Santander. Situado en la CPD del Santan-
der en Solares, comprende la clasificación, catalogación, administración 
y custodia, así como la investigación y difusión de los propios fondos de 
Banco como de otras entidades. Cabe destacar que posee más de 27.000 
registros de fondo.

Educación Financiera: Finanzas para Mortales (www.finanzasparamortales.es). 
Proyecto educativo dirigido a fomentar la cultura financiera a través de sus 
plataformas online y sesiones presenciales, utilizando y aplicando las 
nuevas tecnologías y los medios actuales. Cuenta con más de 600 volun-
tarios procedentes de Banco Santander, distribuidos por los diferentes 
puntos de la geografía española. Han realizado, 560 sesiones formati-
vas en 2016, donde se ha logrado acercar conocimientos financieros a 
más de 5.000 ciudadanos. Han colaborado con más de 50 instituciones, 
destacando colegios e institutos, Cáritas, Cruz Roja, Fundación del Se-
cretariado Gitano, la ONCE, Fundación Integra, Ayuntamientos en las 
que han contribuido a mejorar la cultura financiera de beneficiarios y 
empleados.

Investigación

•	 Atracción del Talento, con diferentes acciones para el desarro-
llo de líneas de investigación estratégicas dedicadas al estudio de 
los “Mercados Globales”, al desarrollo e innovación de “Procesos 
Bancarios” al conocimiento de la “Historia Bancaria y Financiera”. 

•	 Becas de investigación, con la finalidad de colaborar en la reali-
zación de Proyectos de Investigación, especialmente de Jóvenes 
Investigadores, que posibiliten el avance en el conocimiento de 
las metodologías y técnicas aplicables en el ejercicio de la activi-
dad financiera, en particular las que llevan a cabo las entidades 
bancarias, para mejorar el crecimiento económico, el desarrollo 
de los países y el bienestar de los ciudadanos.
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16•	 Premios Tesis Doctorales, con el fin de promover y reconocer 

la generación de conocimientos a través de actuaciones en el 
ámbito del doctorado que desarrollen, impulsen el estudio y la 
investigación en el Sector Financiero.

•	 Y por último, la línea editorial, en la que se enmarcan estos Cua-
dernos de investigación, con el objetivo de poner a disposición 
de la sociedad en general, y de la comunidad académica y profe-
sional en particular, el conocimiento generado en torno al Sector 
Financiero fruto de todas las acciones desarrolladas en el ámbito 
del Santander Financial Institute y especialmente los resultados 
de las Becas, Ayudas y Premios Tesis Doctorales.
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1. Introduction

Since the mid-2000s, many investors have entered into commodity 
markets; investment banks, hedge funds, and other portfolio managers 
increasingly view commodities as an alternative asset class. Prior to 
the financial meltdown of 2008-2009, financial analysts recommended 
long-only investments in commodities as an alternative asset class, to 
decrease expected portfolio risk, increase expected portfolio returns, and 
hedge macroeconomic risk. During that period, commodity prices and vo- 
latility increased significantly, as we can see in Figure 1.1.

In addition to futures and options contracts, other financial products 
that allowed investors to gain exposure to commodities –such as 
commodity index funds, over-the-counter (OTC) swap agreements, and 
exchange traded funds– were also widely popularized. According to some 
estimates, index investment in commodities increased from around $15 
billion at the end of 2003 to more than $200 billion in 2008, just prior 
to the financial crisis.

The notional amounts outstanding in OTC markets and the open interest 
of futures contracts (see Exhibits 1 and 2 of Figure 1.2, respectively) 
experienced rapid growth in the last decade. Furthermore, players other 
than traditional producers and retailers started to trade physical assets. 
For example, some investment banks owned power plants and pipelines 
and purchased other commodity assets to use as hedging tools.

The recent volatility of commodity prices and the rise in commodity in-
vesting also renewed academic interest in the behavior of commodity 
markets. For that reason, a better understanding of the behavior of 
commodity prices from a multivariate and univariate perspective, 
especially when extreme events occur, is of paramount importance for 
accurate asset valuation, risk management, and portfolio decisions. This 
monograph tries to contribute in this respect.
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In this opening chapter, we describe commodity markets, paying special 
attention to energy commodities.

1.1.	 Commodity Markets

In a financial context, the term “commodity” refers to a relatively 
homogeneous consumption good. Commodities differ from stocks and 
bonds in that they do not generate a stream of future cash flows (Geman, 
2005).

Figure 1.1. Relative price and moving volatility of the CRB index
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commodity	 classes.	 Weather,	 carbon	 dioxide	 emission	 allowances,	 and	 computing	
resources	are	examples	of	new	commodity	markets.	
	
There	 is	 considerable	diversity	among	commodities.	Most	are	 storable	at	 some	cost,	
but	some,	such	as	electricity	are	impossible	or	very	costly	to	store.	Supply	and	demand	
patterns	 also	 establish	 differences	 among	 commodities.	 Some	 commodities	 exhibit	
substantial	 seasonality	 in	 demand	 (e.g.,	 natural	 gas,	 electricity),	 whereas	 other	
commodities	 are	 produced	 periodically	 (e.g.,	 grains).	 Thus,	 storability,	 demand,	 and	
supply	 characteristics	 determine	 the	 different	 behavior	 of	 commodity	 prices	 and	
present	a	challenge	to	modelers	(Pirrong,	2012).	
	
Buyers	and	sellers	can	trade	commodities	in	spot	markets,	where	delivery	is	immediate	
or	following	a	very	small	lag;	or	they	can	trade	them	using	forward	agreements	with	a	
given	 future	 delivery	 date,	 either	 in	 organized	 futures	 exchanges	 or	 OTC	 markets.	
Commodity	 forward	contracts	allow	firms	to	obtain	 insurance	for	 the	future	value	of	
their	outputs	or	inputs,	whereas	investors	in	these	contracts	receive	compensation	for	
bearing	the	risk	of	short-term	commodity	price	fluctuations	Gorton	and	Rouwenhorst	
(2006).	
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Figure	1.1.		Relative	price	and	moving	volatility	of	the	CRB	index	
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examples of commodity classes. Weather, carbon dioxide emission 
allowances, and computing resources are examples of new commodity 
markets.

There is considerable diversity among commodities. Most are storable 
at some cost, but some, such as electricity are impossible or very 
costly to store. Supply and demand patterns also establish differences 
among commodities. Some commodities exhibit substantial seasonality 
in demand (e.g., natural gas, electricity), whereas other commodities 
are produced periodically (e.g., grains). Thus, storability, demand, and 
supply characteristics determine the different behavior of commodity 
prices and present a challenge to modelers (Pirrong, 2012).

Buyers and sellers can trade commodities in spot markets, where delivery 
is immediate or following a very small lag; or they can trade them using 
forward agreements with a given future delivery date, either in organized 
futures exchanges or OTC markets. Commodity forward contracts 
allow firms to obtain insurance for the future value of their outputs or 
inputs, whereas investors in these contracts receive compensation for 
bearing the risk of short-term commodity price fluctuations Gorton and 
Rouwenhorst (2006).

There are many active and liquid commodity futures markets, including 
crude oil, heating oil, natural gas, gold, silver, copper, and aluminum 
futures traded in the New York Mercantile Exchange (NYMEX); corn, 
soybean, and wheat futures traded in the Chicago Board of Trade (CBOT); 
non-ferrous metals in the London Metal Exchange (LME); and oil, natural 
gas, electricity, freight, and agriculturals in the Intercontinental Exchange 
(ICE) in London. Other commodity exchanges in emerging markets have 
gained importance in recent years, especially the Dalian Commodity 
Exchange and the Shanghai Futures Exchange for agriculturals and 
non-precious metals trading.
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Figure 1.2. Notional amounts and open interest
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1.2.	 Energy spot and futures markets

The market for energy is huge. The world’s population consumes about 
15,000 gigawatts of power (1 gigawatt is the capacity of the largest 
coal-fired power station). That means a business of $6 trillion a year, 
one-tenth of the world’s economic output. Energy markets have been 
liberalized in the recent years and are still developing. The crude oil 
market is the most liquid and global commodity market. Other important 
energy markets are power, natural gas, and coal. Natural gas is used 
for heating purposes and as an input for power generation. In Western 
Europe and the United States, coal is mainly used for power generation.

Since the end of last century, there has been a continuous process of 
liberalization and deregulation of energy markets. These developments 
have resulted in the separation of services into generation, transmission, 
distribution, and retail, with the goal of creating more competition and 
liquidity. They also have created new market risk exposures, which must 
be managed at every interface of the formerly integrated chain. The 
players in this growing risk management market consist of two major 
categories: physical and financial players. The first are engaged in the 
energy markets due to their physical exposure, such as utilities and 
oil and gas producers. Most actively engage in hedging and trading 
activities, both physically and financially. The second group comprises 
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managers and intermediaries or trade in their own accounts.

Energy markets exhibit some special features that differentiate them 
from other commodity markets. Natural gas or power markets have 
a great variety of traded contracts, including forwards with multiple 
maturities and different delivery periods and short-term contracts, such 
as weekly, day-ahead, and real-time prices. Electricity cannot be stored, 
and natural gas storage is costly and inflexible. Therefore, there is no 
clear price convergence among the different contracts. Location is also 
very important in these markets, because each gas or power hub has a 
different price every day and hour.

When modeling the evolution of gas and power prices, we also must 
consider the presence of extreme price spikes, seasonality, and mean 
reversion. Furthermore, energy markets are closely intertwined by sub-
stitution, complementary, and production relationships that complicate 
the modeling of the dependence among these commodities Casassus, 
Liu, and Tang (2013).

Some commodity derivatives and physical assets that are operated in 
these markets have complex payoffs. Asian, spread, and swing options 
are examples of exotic options that provide a hedge against price and 
volume risks. Such options also appear in the real option approach to 
the valuation of physical assets and contracts, such as power plants, 
interconnections, or gas storage.

1.3.	 Modelling and estimation methodologies

Because of the special characteristics of commodities, pure unconditional 
Gaussian models are not the most suitable framework to describe the 
multivariate and univariate behavior of these assets. Consequently, 
traditional approaches to deal with commodity market risk and price 
commodity derivatives have to be reconsidered. Furthermore, in this 
context of non-normality, nonlinear econometric techniques would be 
required to estimate realistic commodity pricing models. Some of the 
most promising distributions for modeling heavy-tailed and asymmetric 
returns are those belonging to the generalized hyperbolic (GH) class, 
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which exhibit some attractive properties: They are closed under affine 
transformations, can display different tail behavior, and can be both 
symmetric and skewed.

When the joint distribution of returns is non-elliptical, the linear 
correlation is no longer sufficient to describe the dependence structure, 
and nonlinear dependence functions can be more informative. Copula 
theory allows us to obtain the dependence function, or copula, of a 
d-dimensional joint distribution, and use it to model the dependence 
between d arbitrary univariate densities. For example, we can distinguish 
between the tails of the marginal distributions and the presence of 
dependence in the tails, as well as between asymmetry in the distribution 
of individual returns and asymmetry in their dependence structure. 

From a continuous-time perspective, we also consider the presence of 
heavy tails and skewness in the dynamics of commodity prices. A no-
arbitrage spot price model, especially for energy commodities, should 
capture: large price spikes or jumps, strong mean reversion of large 
deviations, and the presence of a seasonal component. The presence of 
jumps in the dynamics of prices prevents us from estimating the model 
parameters using traditional techniques based on Gaussian hypothesis. 
Other approaches such as non-parametric jump filters or simulation 
methods have to be employed.

Because of the presence of discontinuous processes, establishing a link 
between the data generating measure and the risk-neutral measure is 
more difficult than in traditional pure Gaussian cases. Furthermore, 
when analyzing the behavior of commodity forward contracts, some 
questions arise. For example, how are the data generating and risk-
adjusted measures related? Spot price dynamics are much easier to 
model than dynamics under the risk-adjusted measure, because the 
former are observed, whereas the latter can only be inferred from the 
price dynamics of instruments written on the spot commodity, such as 
forward contracts.
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This study is divided into two parts. The first part analyzes the multivariate 
distribution of commodity returns and its impact on portfolio selection 
and tail risk measures. Chapter 2 solves the portfolio selection problem of 
an investor with three-moment preferences when commodity futures are 
part of the investment opportunity set, providing a conditional copula 
model for the joint distribution of returns that allows for time-varying 
moments and state-dependent tail behavior. Chapter 3 approximates the 
exposure of physical and financial players to energy price risk using 
linear combinations of energy futures; it also analyzes the tail behavior 
of energy price risk using a dynamic multivariate model, in which the 
vector of innovations is generated by different generalized hyperbolic 
distributions.

The second part considers the valuation of real assets and commodity 
derivatives in the presence of non-Gaussian shocks in a continuous time 
framework.

Specifically, Chapter 4 employs a jump diffusion model for the price 
differentials and proposes a valuation tool for the connection between 
two electricity markets.

Chapter 5 proposes a reduced-form model for the data generating 
process of commodity prices together with a more flexible change of 
measure, capable of changing the mean-reversion rate of Gaussian and 
jump processes under the risk-adjusted probability measure.
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2. Portfolio selection with commodities

Financial investors mainly take positions in commodity futures contracts 
as a natural way to gain exposure to commodity risk without owning 
the physical asset. Erb and Harvey (2006) and Gorton and Rouwenhorst 
(2006) find that historically, commodity futures exhibited little co-
movements, zero or even negative correlations with stock returns, and 
Sharpe ratios fairly close to those of equities. Therefore, according to 
traditional portfolio theory, commodities should increase diversification 
when included in equity portfolios and may help enhance the 
portfolio’s risk-return profile. Possibly boosted by the potential for such 
diversification benefits, investments in commodity futures indexes and 
related instruments grew quickly after the early 2000s (see Büyüksahin 
and Robe (2010), Etula (2013), Hong and Yogo (2012), and Tang and 
Xiong (2012) for some analysis about this recent boom).

Despite the growing interest in commodities as investment vehicles, 
few studies have analyzed the optimal portfolio allocation taking into 
account the stylized features of commodity futures. A standard mean-
variance framework might not be appropriate for portfolios that contain 
commodity futures due to their returns’ specific distributional cha-
racteristics, such as the presence of serial correlation, heavy tails, and 
skewness (Daskalaki and Skiadopoulos (2011); Gorton and Rouwenhorst 
(2006); Kat and Oomen (2007b); Börger, Cartea, Kiesel, and Schindlmayr 
(2009)). Instead, we propose a more flexible model to be used in the 
portfolio selection problem of a traditional equity investor when cash-
collateralized commodity futures are part of the investment opportunity 
set. Our approach combines a three-moment preferences specification 
with time-varying multivariate density models that describe the sta-
tistical properties of commodities and equity returns, as well as their 
interactions.

With respect to the investor’s preferences, we consider an allocation 
problem in which the investor’s objective function is determined by the 
mean, variance, and skewness of portfolio returns (similarly to Guidolin 
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16and Timmermann (2008); Harvey, Liechty, Liechty, and Müller (2010); and 

Jondeau and Rockinger (2012)). With fairly general assumptions, investors 
show a preference for positive skewness in return distributions and 
aversion to downside risk (negative skewness). That is, in our proposed 
three-moment preferences specification, the investor is eager to decrease 
the chance of large negative deviations, which could reduce the final 
value of the portfolio. Skewness seems likely to play a role due to the 
specific features of commodity assets. For instance, the possibility of 
shortages in supply may produce jumps in prices, leading to skewness 
in the returns of futures contracts.

Regarding the multivariate density model, we offer a flexible approach 
to specify the joint distribution of returns using conditional copula 
models. Copula functions help disentangle the particular characteristics 
of the univariate distributions of equity and commodity returns from 
their dependence structure. We combine conditional copula theory, as 
presented in Patton (2006a, b), with the implicit copula functions of 
multivariate normal mixtures defined by Demarta and McNeil (2005) 
and Embrechts, Lindskog, and McNeil (2003). As our most general model, 
we propose a conditional skewed t copula with generalized Student’s t 
marginal distributions. This copula model allows for asymmetric and tail 
dependence in a multivariate framework, and includes symmetric and 
linear dependence as special cases. Furthermore, the conditional set-up 
enables us to capture time-varying investment opportunities through 
time-varying moments and changes in the dependence parameters. 
These copula models are particularly easy to sample from, and therefore, 
we opt for solving numerically the optimization problem using Monte 
Carlo simulations.

We apply our theoretical approach to weekly data of crude oil and gold 
futures and the S&P 500 equity index, for the period from June 1990 
to September 2010, reserving the observations from September 2006 to 
September 2010 for an out-of-sample performance evaluation. We exa-
mine four primary issues:

1.	 Is there asymmetric and tail dependence among commodities and 
equity returns?
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2.	 Are there discrepancies in the optimal portfolio allocations between 
our conditional copula approach and other more traditional bench-
marks, such as the equally weighted or Gaussian strategies?

3.	 Do these discrepancies translate into economically relevant perfor-
mance differences among methods?

4.	 Is there a single key factor explaining these discrepancies?

First, our preliminary statistics and in-sample and out-of-sample results 
show evidence in favor of heavy tails and skewness in the univariate 
behavior and extreme and asymmetric dependence among oil, gold, 
and equity. Second, we also uncover substantial discrepancies between 
portfolio optimal weights of conditional t copulas and the portfolio 
weights provided by more conventional alternatives, especially for more 
aggressive investors and when there are no restrictions on short selling 
positions in equity. Third, in most cases, the discrepancies in portfolio 
weights translate into economically more profitable investment ratios 
and better relative performance measures with respect to the alternative 
procedures. Depending on the investor’s preferences specification, the 
gains of considering the conditional copula model with tail and asymmetric 
dependence instead of the equally weighted portfolio represent up to 86 
basis points per year for the period 2006-2010. When variance and loss 
aversion increase, portfolio strategies based on more flexible copulas are 
less likely to produce large performance differences. Fourth, no single 
factor offers a sufficient explanation of these differences. Rather, we 
find various explanatory elements, including, the specification of the 
univariate processes, in terms of conditional volatility, skewness, and fat 
tails; and the presence of tail and asymmetric dependence.

The remainder of this chapter is organized as follows: In Section 1, we 
present briefly the investor’s objective function and the portfolio choice 
problem and describe the multivariate conditional copula model. Section 
2 presents the in-sample estimations and the out-of-sample portfolio 
allocation results. We conclude in Section 3.
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162.1.	 Investor’s problem

In this section, we present the portfolio selection problem of an investor 
with mean-variance-skewness preferences that takes positions in 
commodity futures and other risky spot contracts, such as stocks.

No money changes hands when futures are sold or bought; just a margin 
is posted to settle gains and losses. Without any upfront payment, it is 
not clear how to define the rate of return. Following the common ap-
proach in the literature to analyze commodity futures as an asset class 
(Gorton and Rouwenhorst (2006); Hong and Yogo (2012)), we assume 
that long and short positions are fully collateralized. That is, the initial 
margin deposit corresponds with the overall notional value of the futu-
res contract and indicates the initial capital investment related to that 
position (long or short). In this way, we control for the leverage invol-
ved in futures positions, and we can make fair comparisons with spot 
contracts. Therefore, taking collateral in futures contracts into account 
would affect the computation of their rates of return and the budget 
constraint of the investor’s problem, as we will see.

Formally, our portfolio choice problem can be formulated in terms of 
an investor who maximizes expected utility at period t+1 by building 
at time t a portfolio that includes two group of assets: a group with n 
commodity futures contracts, and another group with N-n spot contracts, 
such as stocks.

For this set of N investment opportunities, the wealth at time t+1 equals 
the gross return of the portfolio over the period, defined as

	
(2.1)

where  is the vector of portfolio weights (for spot and futures contracts), 
chosen at time t, and  is the continuously compounded return of 
asset j over the period.

As is well known, returns on financial assets generally deviate from the 
Gaussian distribution, displaying heavy tails and skewness. This departure 
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from normality is even greater in the case of commodities, magnified 
by the well-documented presence of positive and negative spikes in the 
data-generating process of commodity returns (see for example Cartea 
and Figueroa (2005) and Casassus and Collin-Dufresne (2005), among 
others). The fundamentals underlying commodity price formation are 
key determinants of these statistical properties. Accordingly, the presence 
of jumps can be explained by the convex relation between commodity 
prices and the balance among supply, inventories, and demand (see 
Routledge, Seppi, and Spatt (2000)).

For that reason, in our approach, the investor’s objective consists of 
choosing a wealth allocation  that maximizes the expected portfolio 
return penalized for the variance and negative skewness of the portfolio 
returns. That is, for each time t, the optimal weights are given by

(2.2)

where Et, Vart and Skewt are the first three moments of the portfolio returns 
conditioned on the information set available at time t. The parameters 
φv, φv ≥ 0 determine the impact of variance (traditional risk aversion) and 
skewness (loss aversion) on the investor’s utility. By adding aversion 
to negative skewness, we acknowledge the possibility that an investor 
might accept a lower expected return if there is a chance of high positive 
skewness, such as in the form of a large probability of positive jumps.

Finally, in equation (2.2) the domain Ɗ ⊂ ℝ𝑁 represents the budget 
constraint defined by

	
(2.3)

Because both long and short positions in commodity futures contracts 
require the same initial collateral, we have to take the absolute value of 
the futures weights such that short positions in futures contracts cannot 
be used to increase holdings of other assets. 
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162.2.	 Conditional copula model 

Once we have the set-up of the investor’s problem, we need to define 
density forecasts of the returns joint distribution in order to compute the 
optimal portfolio weights. In particular, we employ multivariate condi-
tional copulas to obtain a flexible model for the multivariate distribu-
tion of assets’ log-returns vector rt+1 with dimension d (the number of 
risky assets). Every d-variate distribution consists of d marginal distri-
bution functions or margins that describe each univariate behavior, as 
well as a joint dependence function that defines the relations among 
individual processes. Unlike traditional multivariate distributions, such 
as the Gaussian and Student’s t distributions, copula models support 
the construction of multivariate distributions with arbitrary univariate 
processes and dependence.

Formally, a d-variate copula is a d-dimensional distribution function 
on the unit interval [0,1]d, that is, a joint distribution with d uniform 
marginal distributions. Consider a multivariate conditional distribution 
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distribution 𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡( 𝒓𝒓𝒓𝒓𝑡𝑡𝑡𝑡+1) with the arbitrary marginal distributions 𝐹𝐹𝐹𝐹1,𝑡𝑡𝑡𝑡, … , 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑,𝑡𝑡𝑡𝑡. Thus, using . Thus, using a bottom-up approach, we model 

the marginal distributions of asset returns, followed by the conditional 
copula function that describes their dependence structure.

Our multivariate copula model supports the use of various marginal 
distributions. Thus we can attend to the particular characteristics of 
each asset return, which is a useful feature when different types of assets 
appear in the portfolio, such as commodities and stocks. We present a 
marginal distribution model that captures individual skewness and heavy 
tails, as well as time-varying moments. We build on the autoregressive 
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conditional density models of Hansen (1994), Harvey and Siddique 
(1999), and Jondeau and Rockinger (2003), and we propose a generalized 
Student’s t distribution with possibly time-varying parameters. Thus, the 
univariate process for each asset returns $r_{i,t+1}$ ($i=1,\ldots ,d$) can 
be expressed as follows:

	 (2.5)

	 (2.6)

The conditional mean 
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a bottom-up approach, we model the marginal distributions of asset returns, followed 
by the conditional copula function that describes their dependence structure. 
 
Our multivariate copula model supports the use of various marginal distributions. Thus 
we can attend to the particular characteristics of each asset return, which is a useful 
feature when different types of assets appear in the portfolio, such as commodities and 
stocks. We present a marginal distribution model that captures individual skewness and 
heavy tails, as well as time-varying moments. We build on the autoregressive conditional 
density models of Hansen (1994), Harvey and Siddique (1999), and Jondeau and 
Rockinger (2003), and we propose a generalized Student's t distribution with possibly 
time-varying parameters. Thus, the univariate process for each asset returns $r_{i,t+1}$ 
($i=1,\ldots ,d$) can be expressed as follows: 
 

 (2.5) 

 (2.6) 

 
The conditional mean 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+1 is a linear function of lagged returns and other possible 
explanatory variables. This specification can capture the possible presence of 
autocorrelation and predictability in asset returns. As the exogenous regressors we 
consider explanatory variables employed in previous literature (Hong and Yogo (2012)) 
to predict variation in stocks and commodity futures returns, including the short rate, 
default spread, momentum, basis, and growth in open interest. For the conditional 
variance 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+12 , we employ an asymmetric or leveraged GARCH dynamic. This 
specification is designed to account for volatility clustering and leverage effects, such as 
possible asymmetric responses to positive and negative shocks that have occurred in 
the previous period. Finally, the univariate innovations 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+1 are drawn from a 
generalized Student's t distribution, 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡, which can capture heavy tails and individual 
skewness through the degrees of freedom 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 and asymmetry parameter 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖.  
 
This general specification also includes some well-known univariate distributions as 
particular cases. For instance, if the asymmetry parameter goes to 0, we obtain the 
symmetric Student's t distribution; as degrees of freedom tend to infinity, we would 
converge to a Gaussian distribution. 
 
Now, we present the copula functions that determine the dependence structure of our 
model. The copula function acts like a joint distribution of the probability transformed 
vector (𝐹𝐹𝐹𝐹1,𝑡𝑡𝑡𝑡(𝑟𝑟𝑟𝑟1,𝑡𝑡𝑡𝑡+1), … , 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑,𝑡𝑡𝑡𝑡(𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑,𝑡𝑡𝑡𝑡+1))′, where 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+1))′ are the marginal distribution 
functions of asset returns 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+1, as described in equations (2.5)-(2.6).  In particular, we 
employ three multivariate copula functions: two well-known elliptical copulas, the 
Gaussian and the t copula (Embrechts, Lindskog, and McNeil (2003)), and an asymmetric 
multivariate dependence, the so-called skewed $t$ copula (Demarta and McNeil 
(2005)). They are all implicit dependence functions of various multivariate normal 
mixtures. More specifically, they are the parametric copula functions contained in the 
multivariate Gaussian, Student's t, and generalized hyperbolic skewed t distributions, 
respectively. We can obtain these implicit copulas by evaluating a given multivariate 
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a bottom-up approach, we model the marginal distributions of asset returns, followed 
by the conditional copula function that describes their dependence structure. 
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particular cases. For instance, if the asymmetry parameter goes to 0, we obtain the 
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multivariate dependence, the so-called skewed $t$ copula (Demarta and McNeil 
(2005)). They are all implicit dependence functions of various multivariate normal 
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a bottom-up approach, we model the marginal distributions of asset returns, followed 
by the conditional copula function that describes their dependence structure. 
 
Our multivariate copula model supports the use of various marginal distributions. Thus 
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stocks. We present a marginal distribution model that captures individual skewness and 
heavy tails, as well as time-varying moments. We build on the autoregressive conditional 
density models of Hansen (1994), Harvey and Siddique (1999), and Jondeau and 
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time-varying parameters. Thus, the univariate process for each asset returns $r_{i,t+1}$ 
($i=1,\ldots ,d$) can be expressed as follows: 
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default spread, momentum, basis, and growth in open interest. For the conditional 
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This general specification also includes some well-known univariate distributions as 
particular cases. For instance, if the asymmetry parameter goes to 0, we obtain the 
symmetric Student's t distribution; as degrees of freedom tend to infinity, we would 
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Gaussian and the t copula (Embrechts, Lindskog, and McNeil (2003)), and an asymmetric 
multivariate dependence, the so-called skewed $t$ copula (Demarta and McNeil 
(2005)). They are all implicit dependence functions of various multivariate normal 
mixtures. More specifically, they are the parametric copula functions contained in the 
multivariate Gaussian, Student's t, and generalized hyperbolic skewed t distributions, 
respectively. We can obtain these implicit copulas by evaluating a given multivariate 
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a bottom-up approach, we model the marginal distributions of asset returns, followed 
by the conditional copula function that describes their dependence structure. 
 
Our multivariate copula model supports the use of various marginal distributions. Thus 
we can attend to the particular characteristics of each asset return, which is a useful 
feature when different types of assets appear in the portfolio, such as commodities and 
stocks. We present a marginal distribution model that captures individual skewness and 
heavy tails, as well as time-varying moments. We build on the autoregressive conditional 
density models of Hansen (1994), Harvey and Siddique (1999), and Jondeau and 
Rockinger (2003), and we propose a generalized Student's t distribution with possibly 
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autocorrelation and predictability in asset returns. As the exogenous regressors we 
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possible asymmetric responses to positive and negative shocks that have occurred in 
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This general specification also includes some well-known univariate distributions as 
particular cases. For instance, if the asymmetry parameter goes to 0, we obtain the 
symmetric Student's t distribution; as degrees of freedom tend to infinity, we would 
converge to a Gaussian distribution. 
 
Now, we present the copula functions that determine the dependence structure of our 
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a bottom-up approach, we model the marginal distributions of asset returns, followed 
by the conditional copula function that describes their dependence structure. 
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feature when different types of assets appear in the portfolio, such as commodities and 
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density models of Hansen (1994), Harvey and Siddique (1999), and Jondeau and 
Rockinger (2003), and we propose a generalized Student's t distribution with possibly 
time-varying parameters. Thus, the univariate process for each asset returns $r_{i,t+1}$ 
($i=1,\ldots ,d$) can be expressed as follows: 
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The conditional mean 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+1 is a linear function of lagged returns and other possible 
explanatory variables. This specification can capture the possible presence of 
autocorrelation and predictability in asset returns. As the exogenous regressors we 
consider explanatory variables employed in previous literature (Hong and Yogo (2012)) 
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default spread, momentum, basis, and growth in open interest. For the conditional 
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This general specification also includes some well-known univariate distributions as 
particular cases. For instance, if the asymmetry parameter goes to 0, we obtain the 
symmetric Student's t distribution; as degrees of freedom tend to infinity, we would 
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Gaussian and the t copula (Embrechts, Lindskog, and McNeil (2003)), and an asymmetric 
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a bottom-up approach, we model the marginal distributions of asset returns, followed 
by the conditional copula function that describes their dependence structure. 
 
Our multivariate copula model supports the use of various marginal distributions. Thus 
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density models of Hansen (1994), Harvey and Siddique (1999), and Jondeau and 
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time-varying parameters. Thus, the univariate process for each asset returns $r_{i,t+1}$ 
($i=1,\ldots ,d$) can be expressed as follows: 
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default spread, momentum, basis, and growth in open interest. For the conditional 
variance 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+12 , we employ an asymmetric or leveraged GARCH dynamic. This 
specification is designed to account for volatility clustering and leverage effects, such as 
possible asymmetric responses to positive and negative shocks that have occurred in 
the previous period. Finally, the univariate innovations 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+1 are drawn from a 
generalized Student's t distribution, 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡, which can capture heavy tails and individual 
skewness through the degrees of freedom 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖 and asymmetry parameter 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖.  
 
This general specification also includes some well-known univariate distributions as 
particular cases. For instance, if the asymmetry parameter goes to 0, we obtain the 
symmetric Student's t distribution; as degrees of freedom tend to infinity, we would 
converge to a Gaussian distribution. 
 
Now, we present the copula functions that determine the dependence structure of our 
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we can attend to the particular characteristics of each asset return, which is a useful 
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16functions of various multivariate normal mixtures. More specifically, 

they are the parametric copula functions contained in the multivariate 
Gaussian, Student’s t, and generalized hyperbolic skewed t distributions, 
respectively. We can obtain these implicit copulas by evaluating a given 
multivariate distribution (e.g., generalized hyperbolic skewed t) at the 
quantile functions of its corresponding marginal distributions. 

For illustrative purposes, in Figure 2.1 we present the contour plots and 
probability density functions of these copulas for a two-dimensional 
case. Although the examples in Figure 2.1 are for a bivariate case, 
a useful property of all three copulas considered is that they can be 
employed directly to specify the dependence structure of an arbitrary 
number of risky assets. 

As Figure 2.1 reveals, using these three copulas, we can model three 
different types of dependence. The Gaussian copula, 
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distribution (e.g., generalized hyperbolic skewed t) at the quantile functions of its 
corresponding marginal distributions.  
 
For illustrative purposes, in Figure 2.1 we present the contour plots and probability 
density functions of these copulas for a two-dimensional case. Although the examples 
in Figure 2.1 are for a bivariate case, a useful property of all three copulas considered is 
that they can be employed directly to specify the dependence structure of an arbitrary 
number of risky assets.  
 
As Figure 2.1 reveals, using these three copulas, we can model three different types of 
dependence. The Gaussian copula, 𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺( · ; 𝑷𝑷𝑷𝑷), defines linear, symmetric dependence, 
completely determined by the correlation matrix 𝑷𝑷𝑷𝑷. Thus it is unable to capture tail 
dependence or asymmetries. The t copula, 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇( · ; 𝑷𝑷𝑷𝑷, 𝜈𝜈𝜈𝜈), is also elliptically symmetric but 
allows for tail dependence through the degrees-of-freedom parameter, 𝜈𝜈𝜈𝜈. The plots in 
Figure 2.1 show that the t copula assigns more probability to the extremes than does 
the Gaussian copula. The greater the degrees of freedom, the smaller the level of tail 
dependence, converging in the limit 𝜈𝜈𝜈𝜈 → ∞ to the Gaussian copula. Finally, the skewed 
t copula, 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇( · ; 𝑷𝑷𝑷𝑷, 𝜈𝜈𝜈𝜈, 𝜸𝜸𝜸𝜸), can capture extreme and asymmetric dependence of the asset 
returns. Through the d-dimensional vector of asymmetry parameters 𝜸𝜸𝜸𝜸, the skewed t 
copula can assign more weight to one tail than the other. For example, in Figure 2.1 all 
elements of the asymmetry vector are negative, and therefore, the density contour is 
clustered in the negative-negative quadrant. Eventually, if 𝜸𝜸𝜸𝜸 → 𝟎𝟎𝟎𝟎, asymmetric 
dependence goes to 0, and we recover the symmetric t copula. 
 
In addition, following pioneering works by Patton (2006a,b) we can parametrize time 
variation in the conditional copula function of our multivariate model. For that purpose, 
we allow that the dependence matrix 𝑷𝑷𝑷𝑷𝑡𝑡𝑡𝑡 of our conditional copula may evolve over time, 
according to some GARCH-type process. 
 
Our model structure, formed by the marginal distributions and the copula, allows for a 
two-step estimation procedure. In the first step, we obtain the maximum likelihood (ML) 
estimates of the individual processes; then, we determine the parameter estimates of 
the copula function. From this ML approach, we can compute the asymptotic and robust 
standard errors for the estimates.  
 
Once we have estimated the model density function, we use this information to obtain 
the optimal portfolio. For our parametric density models, the integrals defining the 
portfolio return moments involved in the investor's optimization problem of equation 
(2.2) do not have a closed-form solution. Using Monte Carlo simulations to estimate the 
value of these integrals, we can solve numerically the optimization problem. In this 
respect, an advantage of our implicit copulas is that it is easy to sample from them, as 
long as we are able to sample from the normal mixture distribution from which they are 
extracted. 
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Our model structure, formed by the marginal distributions and the 
copula, allows for a two-step estimation procedure. In the first step, 
we obtain the maximum likelihood (ML) estimates of the individual 
processes; then, we determine the parameter estimates of the copula 
function. From this ML approach, we can compute the asymptotic and 
robust standard errors for the estimates. 

Once we have estimated the model density function, we use this 
information to obtain the optimal portfolio. For our parametric density 
models, the integrals defining the portfolio return moments involved 
in the investor’s optimization problem of equation (2.2) do not have a 
closed-form solution. Using Monte Carlo simulations to estimate the 
value of these integrals, we can solve numerically the optimization 
problem. In this respect, an advantage of our implicit copulas is that it 
is easy to sample from them, as long as we are able to sample from the 
normal mixture distribution from which they are extracted.

Figure 2.1. Copula functions
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Panel B: Probability density functions
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Panel A shows the contour plots of the distribution for three copulas. To compare just the copula 
function, all of them are evaluated using standard normal marginal distributions, N(0,1). Panel B 
shows a bivariate representation of the probability density function for the three copulas.
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16Table 2.1. Descriptive Statistics for oil, gold, and equity weekly returns

2.3.	 Empirical Results

Our empirical application relies on three risky assets: two commodity 
futures, oil and gold, and the S&P 500 equity index. The oil futures 
correspond to West Texas Intermediate (WTI) crude oil from the New 
York Mercantile Exchange (NYMEX). The gold futures correspond to 
the gold bar, with a minimum of 0.995 fineness, from the New York 
Commodities Exchange (COMEX). These futures are two of the most 
actively traded commodity contracts in the world, and they do not have 
tight restrictions on the size of daily price movements. In both cases, 
we employ the most liquid futures contracts, measured by daily trading 
volume, of all maturities available. The sample period considered ranges 
from June 20, 1990 to September 8, 2010, for a total of 1056 weekly 
observations. We divided the sample in two sub-periods, such that the 
period from June 20, 1990 to June 20, 2006 (836 observations) supported 
the in-sample estimation analyses of the models, and the remaining 220 
observations from June 20, 2006 to September 8, 2010 were reserved for 
the out-of-sample portfolio performance exercise.

According to the Jarque-Bera and Kolmogorov-Smirnov tests, normality 
in the returns’ unconditional distribution is strongly rejected for all samples 
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(see Table 2.1). Besides, skewness and kurtosis of returns differs across 
assets and sample periods. There is also evidence of serial correlation in 
the returns and squared returns for all time series.

To check for the presence of asymmetric dependence between asset 
returns in our sample, we analyzed the exceedance correlation and 
tail dependence. For each pair of asset returns, Figure 2.2 plots the 
exceedance correlation function proposed in Longin and Solnik (2001), 
which depicts the correlation between returns above or below a given 
quantile. In the case of symmetric dependence, the correlation for both 
extremes

Figure 2.2. Exceedance correlation
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extremes	

	
	
should	be	similar	and	equal	to	zero	for	Gaussian	dependence.	According	to	these	plots,	
any	 assumptions	 of	 normality	 or	 symmetry	 seem	unrealistic	 for	 our	 sample.	Oil	 and	
gold	 do	 not	 display	 the	 same	 level	 of	 diversification	 for	 bear	 and	 bull	markets,	 and	
correlation	 between	 oil	 and	 equity	 is	 highly	 positive	 for	 large	 negative	 returns	 but	
smaller	for	large	positive	returns.	The	correlation	between	gold	and	equity	is	close	to	0	
for	 large	 negative	 returns	 and	 significantly	 positive	 for	 very	 large	 positive	 returns.	
Although	oil	and	gold	are	very	positively	correlated	for	large	negative	returns,	are	not	
or	even	are	negatively	correlated	for	large	positive	returns.	
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and	 Solnik	 (2001),	 which	 depicts	 the	 correlation	 between	 returns	 above	 or	 below	 a	
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should be similar and equal to zero for Gaussian dependence. According 
to these plots, any assumptions of normality or symmetry seem 
unrealistic for our sample. Oil and gold do not display the same level 
of diversification for bear and bull markets, and correlation between oil 
and equity is highly positive for large negative returns but smaller for 
large positive returns. The correlation between gold and equity is close 
to 0 for large negative returns and significantly positive for very large 
positive returns. Although oil and gold are very positively correlated 
for large negative returns, are not or even are negatively correlated for 
large positive returns.

To obtain the optimal portfolio decisions based on our copula models 
over the out-of-sample period, we need the forecasts of the different 
parameters at play over the 2006-2010 period. For that purpose, we 
recursively re-estimate the marginal and copula models throughout 
the out-of-sample period (220 weekly observations) using a rolling 
window scheme that drops distant observations as more recent ones are 
added and therefore keeps the size of the estimation window fixed at 
836 observations. Once we re-estimate the model for each point in the 
out-of-sample period, we construct the time-series of one-period-ahead 
parameter forecasts needed for the allocation stage.

Figure 2.3 shows the output of the forecasts of the conditional mean, 
volatility, and skewness of each return process throughout the out-of-
sample period. The volatility forecasts of all asset returns are relatively 
high, especially around October 2008. Conditional skewness is negative 
for equity and oil returns during the 2006-2010 period, but it is positive for 
gold returns during that period.
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Figure 2.4 presents the forecasts of the conditional dependence parame-
ters. It is worth noting that there is an increase in the fitted correlation 
coefficients among oil, gold, and

equity from October 2008, especially for oil and equity returns (see Ex-
hibit 1). In addition, the dependence coefficients seem to evolve more 
similarly in the latter part of the sample. The degrees-of-freedom fore-
casts decrease after August 2007, indicating rising tail dependence since 
then (see Exhibit 2). In addition, the asymmetry parameter of oil ranges 
between -0.6 and -0.2, which implies that extreme dependence seems to 
be stronger during large depreciations of oil, compared with large drops 
in gold or equity, whose asymmetry parameters range between -0.2 and 
+0.2 (see the forecast of the asymmetry parameter vector in Exhibit 3).

In summary, the skewed t copula provides a more informative measure 
of the dependence between commodities and equity-index returns, 
even taking into account that part of the tail behavior is captured by 
the skewed fat-tailed marginal distribution models. Therefore, possibly 
univariate tail behavior and asymmetric dependence are key factors not 
taken into account in a standard elliptical, à la Markowitz, approach. The 
extent to which these factors have a significant impact on the portfolio 
choice decision is addressed in the next section.

We now investigate the optimal portfolio decisions based on six model-
driven portfolio strategies that can be analyzed from the perspective of 
copula models. 

First, we consider the unconditional multivariate Gaussian model 
(Markowitz strategy), a constant Gaussian copula with unconditional 
Gaussian marginal distributions. Second, we generalize this case by 
considering two conditional multivariate Gaussian distributions: the 
constant conditional correlation (CCC) and the dynamic conditional 
correlation (DCC). Both CCC and DCC specifications are formed by con-
ditional Gaussian marginal distributions with conditional means and 
variances. Third, we compute portfolio strategies using the conditional 
copula models introduced previously. Thus, we consider the generalized 
Student’s t distribution for the marginal models and three types of con-
ditional dependence functions: Gaussian, t, and skewed t. 
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Figure 2.4 Conditional parameters of the conditional skewed t copula
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With	 this	 set	 of	 alternatives,	 we	 can	 compare	 the	 gains	 of	 including	 more	 flexible	
models	 as	 a	 means	 to	 compute	 portfolio	 decisions.	 In	 addition,	 we	 include	 in	 the	
analysis	 the	 equally	 weighted	 portfolio,	 as	 a	 common	 benchmark	 used	 in	 prior	
literature.	 Moreover,	 we	 analyze	 the	 portfolio	 allocations	 for	 different	
parameterizations	of	the	 investor's	three-moment	preferences,	defined	by	of	 	and	
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In	Panel	A	of	Figure	2.5	we	plot,	for	two	of	these	preferences	specifications,	the	time-
series	of	portfolio	weights	resulting	from	the	portfolio	decisions	made	using	our	most	
general	 model,	 the	 conditional	 skewed	 t	 copula.	 Panel	 B	 of	 Figure	 2.5	 shows	 the	
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Exhibit 3: Forecasted asymmetry vector
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Figure 2.6. Conditional parameters of the conditional skewed t copula
This figure shows the one-step ahead forecasts over the out-of-sample period for the
correlation coefficients, degrees of freedom, and asymmetry vector components of
the conditional skewed t copula model.
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Exhibit 3: Forecasted asymmetry vector
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Figure 2.6. Conditional parameters of the conditional skewed t copula
This figure shows the one-step ahead forecasts over the out-of-sample period for the
correlation coefficients, degrees of freedom, and asymmetry vector components of
the conditional skewed t copula model.
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series of portfolio weights resulting from the portfolio decisions made using our most 
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allocation differences between the unconditional Gaussian model and the conditional 
skewed t model for the same risk aversion parameterization. 
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In Panel A of Figure 2.5 we plot, for two of these preferences specifica-
tions, the time-series of portfolio weights resulting from the portfolio 
decisions made using our most general model, the conditional skewed t 
copula. Panel B of Figure 2.5 shows the allocation differences between 
the unconditional Gaussian model and the conditional skewed t model 
for the same risk aversion parameterization.

Figure 2.5 Optimal portfolio weights
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Figure 2.7. Optimal portfolio weights

conditional skewed t A = 2 and 5. Panel

model (“a la Markowitz”) for A = 5.
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strategies depends largely on the use of different marginal distribution 
models. The first significant discrepancies arise when using time-varying 
Gaussian marginal distributions (CCC and DCC models) instead of un-
conditional Gaussian margins (Uncond. Gaussian model).

A second source of allocation differences is driven by the various types 
of dependence captured with our copula models. These discrepancies in 
optimal portfolio weights arise, first, from introducing a time-varying 
conditional dependence (e.g., CCC vs. DCC); and second, from conside-
ring tail dependence (e.g., t copula vs. Gaussian copula) and asymmetric 
dependence (e.g., skewed t vs. t copula).

2.4.	 Conclusions

This chapter investigates the portfolio selection problem of an investor 
with time-varying three-moment preferences when commodity futures 
are part of the investment opportunity set. In our specification, the 
portfolio returns’ skewness provides a measure of the investor’s loss 
aversion. We model the joint distribution of asset returns using a 
flexible multivariate copula setting that can disentangle the specific 
properties of each asset process from its dependence structure. The 
more general model we posit consists of a conditional skewed t copula 
with generalized Student’s t marginal distributions and time-varying 
moments. Thus we can capture the specific distributional characteristics 
of commodity-futures returns and focus on their implications for the 
portfolio selection problem.

The empirical application employs weekly data for oil and gold futures 
and for the S&P 500 equity index, from June 1990 to September 2010. 
We find substantial discrepancies between the holdings obtained from 
our conditional copula models and those from more traditional Gaussian 
models.

The key factors underlying these differences are the different specifica-
tions of the time-varying marginal distributions, the presence of dynamic 
conditional dependence among the univariate processes, and the mode-
ling of tail and asymmetric dependence. The univariate higher moments 
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and the type of tail dependence are more relevant for aggressive investors. 
These discrepancies translate into economical differences in terms of bet-
ter investment ratios and relative performance measures for the different 
specifications considered.
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3. Tail risk in energy portfolios

The growth of energy markets has been sustained by continued 
deregulation processes, which have encouraged the separation of the 
formerly integrated value chains. This process has increased market risk 
exposures at every stage of the chain, including the purchase and sale 
of fuels, electricity generation, and obtaining gas or electricity for retail 
supply. In addition to the physical resource holders, financial players, 
such as banks and hedge funds, increasingly participate in energy 
markets to satisfy their customers’ demands to gain or hedge energy risk 
exposure, as well as to trade on their own behalf. In this context, energy-
related companies and financial players experience greater exposures 
to energy price risk, which has particular characteristics that make it 
different from other market risks and requires clearer explication.

In this chapter, we therefore analyze the energy price risks from a 
multivariate perspective.  In particular, we study the aggregate tail 
risk of different linear energy portfolios using an asset-level approach. 
Accordingly, we can propose a multivariate model for the vector of 
energy risk factors; using the portfolio exposures to each factor, we in 
turn can calculate the aggregate tail behavior of the portfolio. Next, 
we compute the corresponding portfolio risk measures and evaluate the 
extent to which the tail pattern of the model is important in practice.

With this asset-level approach, we can capture the entire structure of 
energy risk factors in a portfolio and their interdependence relationships. 
This multivariate behavior (univariate and joint structure) of energy 
risk factors depends on the special characteristics of energy markets. 
In particular, the pricing of energy commodities relies largely on an 
equilibrium among supply, demand, and inventories, subject to various 
operational constraints (for example, due to infeasible or overly costly 
storage). These characteristics cause deregulated energy markets to 
exhibit substantial volatility, price spikes, time-varying correlation, 
dependence in the extremes, and mean-reversion patterns (e.g., Cartea 
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and Figueroa (2005), Escribano, Peña, and Villaplana (2011), Pirrong 
(2012), and Routledge, Seppi, and Spatt (2001)).

We therefore employ a multivariate density model to depict the energy 
risk factors, in which we seek to include all the stylized features of the 
data generating process. For this purpose, we consider an econometric 
specification with time-varying conditional means, volatilities, and 
correlations, in which the innovation vector follows a multivariate 
generalized hyperbolic (GH) distribution. The GH class is a very flexible 
family of distributions that accommodates excess kurtosis, skewness, 
and dependence in the extremes (see Börger, Cartea, Kiesel, and 
Schindlmayr (2009), Eberlein and Stahl (2003), and Giot and Laurent 
(2003), for previous theoretical and empirical studies that employ some 
distributions within this class).

We apply our multivariate GH specification to model the returns vector 
formed by the four most important commodities in the U.S. energy 
market: crude oil, natural gas, coal, and electricity. These commodities 
constitute the elements of our linear energy portfolios, which represent 
the exposure of any given energy company or financial player to 
energy price risk. We use daily data from August 2005 to March 2012 
to estimate the multivariate models and evaluate the tail risk of the 
portfolio profit-and-loss (P&L) distribution. Then using data from March 
2010 to March 2012, we conduct out-of-sample forecast evaluations of 
the risk measures.

We address the analysis of the aggregate tail risk by calculating two 
risk measures, the value at risk (VaR) and the expected shortfall (ES), 
for long and short trading positions in the energy portfolios. The VaR 
corresponds to the quantile of the portfolio loss distribution for a given 
probability or confidence level. The ES is defined as the conditional 
average loss beyond a given quantile, and it better describes the behavior 
of the portfolio losses in the tail. We estimate both measures for different 
confidence levels, which define how far out in the tails the risk measures 
are calculated, as well as for several day horizons, to obtain a short-
term surface of risk. Whereas most equity risk studies have focused on 
the left tail of long positions, the presence of positive jumps in the data 
generating process of energy commodities, especially for the natural 
gas and electricity markets, suggests that the analysis of the right tail of 
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who are worried about increases in energy prices (i.e., those with short 
positions). 

Finally, using different backtest procedures, we monitor, for the out-
of-sample period, the performance of the risk measure estimates that 
correspond to the GH models. We pay special attention to the backtesting 
of the ES estimates, because this measure offers more information about 
aggregate tail behavior.

Empirical results show that there are more VaR violations across models 
for short positions than for long ones, confirming the positive asymmetry 
of the P&L distribution of the energy portfolios. We also observe that 
the ES exceedances are quite high for (conditional and unconditional) 
Gaussian models, especially for the two utility portfolios. The heavy-tail 
models behave much better than alternative versions, with regard to the 
tail risk of short positions. Therefore, the extent of the underestimations 
of the tail risk of the portfolio loss distribution depends on whether we 
are analyzing short or long positions in the energy portfolio, the type 
of portfolio, the horizon, and how far out in the tail the risk is being 
analyzed.

3.1.	 Energy portfolios and returns

We approximate a given exposure to energy price risk using a corre-
sponding portfolio of energy futures. Thus, changes in the energy price 
risk factors can be mapped linearly to changes in the value of the energy 
futures portfolio. A portfolio of futures contracts can also be considered 
a first-order approximation of more general energy asset portfolios with 
non-linear payoffs (Tseng and Barz, 2002; Cartea and González-Pedraz, 
2012). For example, a linear portfolio could represent directly the en-
ergy futures positions of an institutional investor or the energy price 
exposure of an electricity producer with fuel-fired power plants. In this 
chapter, we consider four energy commodities: crude oil, natural gas, 
coal, and electricity, identified by subscripts i equal to 1, 2, 3, and 4, 
respectively. These four commodities substantially represent any general 
exposure to energy price risk.
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The h-period return (in dollars) on an energy portfolio at time t is given 
by

	 (3.1)

where 

 22 

The h-period return (in dollars) on an energy portfolio at time t is given by 

 (3.1) 

where 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡(ℎ) is the h-period net return on the portfolio, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡(ℎ)  =  ∑ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡−𝑘𝑘𝑘𝑘ℎ−1
𝑘𝑘𝑘𝑘=0  is the 4×1 

vector of h-period log-returns at time t. The energy log-returns 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡  constitute the vector 
of risk factors. 
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 is the vector of independent innovations, 
which follows a four-variate generalized hyperbolic (GH) distribution 
with zero mean and an identity covariance matrix.

To capture the possible presence of serial correlation in energy returns, 
we consider a diagonal vector autoregressive (VAR) process with up to 
5 lags for the vector of returns. We want to capture possible persistence 
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16and asymmetry in conditional variances and correlations. For that 

purpose, we assume univariate asymmetric GARCH(1,1) processes for 
the conditional variances and a modified version of the asymmetric 
dynamic conditional correlation (ADCC) model of Cappiello, Engle, 
and Sheppard (2006) for the time-varying correlation matrix. With this 
specification, we investigate, in the conditional correlation, the presence 
of asymmetric responses to positive shocks.

Motivated by the presence of jumps and spikes in energy prices, we employ 
multivariate GH distributions to model the conditional distribution of 
the vector of innovations 
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. These GH distributions are flexible enough 
to accommodate different tail behaviors and types of asymmetry (e.g., 
thin or heavy tails, symmetric or positive/negative skewness). The GH 
family can be obtained using the following normal mean-variance 
mixture representation (see McNeil, Frey, and Embrechts, 2005):

	 (3.3)

where  and  are the 4x1 location and skewness parameter vectors, 
respectively, and 
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where 𝜇𝜇𝜇𝜇 and 𝛾𝛾𝛾𝛾 are the 4x1 location and skewness parameter vectors, respectively, and 
𝛴𝛴𝛴𝛴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′ is the 4x4 dispersion matrix. The random vector 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡 follows a four-variate 
Gaussian distribution with zero mean and identity covariance, and 𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 is a non-negative 
random variable independent of 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡. The mixing random variable 𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 can be understood 
as a shock that affects the covariance of energy assets, due to the arrival of new 
information in the markets (e.g., shortages in future supply, unexpected increases in 
demand). Conditioned on 𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 the vector of innovations is normally distributed. 
 
In the case of GH distributions, the mixing random variable 𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 follows a generalized 
inverse Gaussian (GIG) distribution. The very flexible GIG distribution includes as special 
boundary cases the gamma and inverse gamma distributions. We consider five 
particular cases of multivariate GH distributions: the normal inverse Gaussian (NIG) 
distribution, the variance-gamma (VG) distribution, the skewed t (skT) distribution, the 
Student's t (T) distribution, and the Gaussian (G) distribution (for which 𝛾𝛾𝛾𝛾 = 0 and 𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 = 
1).  
 
The proposed GH distributions have the advantages of exhibiting different tail patterns 
(Bibby and Sørensen (2003)). On the one hand, the tails of the NIG and VG distributions 
decay exponentially, such that their probability density functions behave, when 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 →
±∞, proportionally to an exponential function. This pattern is intermediate between 
the behavior of the Gaussian distribution, which decays more rapidly, and other, more 
extreme, polynomial decays. For this reason, NIG and VG distributions are sometimes 
referred to as semi-heavy tailed. The tails of the T distribution instead are symmetric 
and behave as polynomials, such that they decay slower than those of the NIG and VG 
distributions. Finally, the skT distribution offers the special property of possessing, for 
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of the NIG and VG distributions decay exponentially, such that their 
probability density functions behave, when 
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loses money when the portfolio value increases, so we attend to the right side of the 
distribution. For long positions, we focus on the left tail. 
 
We consider two measures of risk: the value at risk (VaR) and the expected shortfall (ES). 
The VaR is widely used in the financial industry to monitor risk exposures for regulatory 
purposes and to establish trading constraints in investment decisions. In the energy 
industry, especially for producers, VaR is becoming more popular, with increasing 
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where 𝜇𝜇𝜇𝜇 and 𝛾𝛾𝛾𝛾 are the 4x1 location and skewness parameter vectors, respectively, and 
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The proposed GH distributions have the advantages of exhibiting different tail patterns 
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energy portfolios. From the point of view of risk managers, reliable estimates of risk 
measures depend on a proper understanding of the portfolio's tail behavior. In our 
approach, we study both long and short positions in the energy portfolios. Thus, we 
focus on the two tails of the P&L distribution. For short positions, the portfolio holder 
loses money when the portfolio value increases, so we attend to the right side of the 
distribution. For long positions, we focus on the left tail. 
 
We consider two measures of risk: the value at risk (VaR) and the expected shortfall (ES). 
The VaR is widely used in the financial industry to monitor risk exposures for regulatory 
purposes and to establish trading constraints in investment decisions. In the energy 
industry, especially for producers, VaR is becoming more popular, with increasing 
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3.2.	 Risk measures and numerical implementation

Measuring conditional risk is a natural and direct way to analyze the tail 
behavior of energy portfolios. From the point of view of risk managers, 
reliable estimates of risk measures depend on a proper understanding of 
the portfolio’s tail behavior. In our approach, we study both long and 
short positions in the energy portfolios. Thus, we focus on the two tails 
of the P&L distribution. For short positions, the portfolio holder loses 
money when the portfolio value increases, so we attend to the right side 
of the distribution. For long positions, we focus on the left tail.

We consider two measures of risk: the value at risk (VaR) and the 
expected shortfall (ES). The VaR is widely used in the financial industry 
to monitor risk exposures for regulatory purposes and to establish trading 
constraints in investment decisions. In the energy industry, especially 
for producers, VaR is becoming more popular, with increasing relevance 
for corporate decisions. For example, VaR provides insights to determine 
hedging policies or, in the case of utilities, to obtain an optimal selection 
in the generation mix. Formally, for a certain horizon h and confidence 
level α, the VaR is defined as the α-quantile of the conditional distribution 
of portfolio changes 
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relevance for corporate decisions. For example, VaR provides insights to determine 
hedging policies or, in the case of utilities, to obtain an optimal selection in the 
generation mix. Formally, for a certain horizon h and confidence level 𝛼𝛼𝛼𝛼, the VaR is 
defined as the 𝛼𝛼𝛼𝛼-quantile of the conditional distribution of portfolio changes 𝛥𝛥𝛥𝛥𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡(ℎ). 
That is, the probability of incurring losses greater than a certain threshold value, called 
the VaR, is equal to 𝛼𝛼𝛼𝛼: 

 (3.4) 

 
Despite its widespread use, the VaR also has been subject to substantial criticism, 
particularly because diversification does not always reduce risk when it is measured by 
VaR. In addition, the VaR ignores important information related to the tails of the loss 
distribution beyond the 𝛼𝛼𝛼𝛼-quantile, disregarding the risk of extreme losses. In contrast, 
ES measures cope well with such shortcomings and describe tail risk better (Artzner, 
Delbaen, Eber, and Heath (1999)). The ES is defined as the expected loss, conditional on 
the loss exceeding the VaR over a certain horizon h, 

 (3.5) 

that is, the average portfolio loss in the of 𝛼𝛼𝛼𝛼% worst cases. 
 
We employ an asset-level approach to measure the tail risk of the energy portfolios. We 
begin by modeling the joint distribution of energy returns under the dynamic 
econometric models proposed in the previous section. Then we aggregate these results 
for each portfolio according to its exposures to each commodity.  To aggregate the risk 
factors, it is convenient to represent the portfolio's P&L as a linear function of the 
individual energy log-returns. Because the GH distributions are closed under linear 
transformations, when we aggregate the energy risk factors in a given portfolio, the 
linearized P&L distribution still belongs to the same class of GH distributions as does the 
vector of risk factors. Finally, we can adopt two alternative numerical implementations 
for calculating the risk measures. We can compute VaR and ES under the GH model by 
solving the integrals implicit in equations (3.4) and (3.5) numerically for the portfolio 
P&L distribution. Alternatively, we can apply Monte Carlo simulations, which are usually 
more effective and preferred in this context. 
 

3.3 Model estimation 
 

Our energy portfolios consist of energy commodity futures for crude oil, natural gas, 
coal, and electricity. These four commodities effectively represent a wide range of 
exposures to energy price risk. In all cases, we employ daily series of one-month ahead 
monthly futures contracts traded on the New York Mercantile Exchange (NYMEX), which 
are the most liquid contracts for the four energy commodities analyzed. 
 
he full-sample period runs more than six years from August 2005 to March 2012, and 
includes 1,640 daily observations. We consider all data since the launch of the PJM 
electricity futures in the NYMEX (April 2003) until the day of the analysis (March 2012), 
but we drop the first observations (from April 2003 to August 2005), for which liquidity  

. That is, the probability of incurring losses 
greater than a certain threshold value, called the VaR, is equal to α:

	 (3.4)
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criticism, particularly because diversification does not always reduce 
risk when it is measured by VaR. In addition, the VaR ignores important 
information related to the tails of the loss distribution beyond the 
α-quantile, disregarding the risk of extreme losses. In contrast, ES 
measures cope well with such shortcomings and describe tail risk better 
(Artzner, Delbaen, Eber, and Heath (1999)). The ES is defined as the 
expected loss, conditional on the loss exceeding the VaR over a certain 
horizon h,

	 (3.5)

that is, the average portfolio loss in the of α% worst cases.

We employ an asset-level approach to measure the tail risk of the 
energy portfolios. We begin by modeling the joint distribution of energy 
returns under the dynamic econometric models proposed in the previous 
section. Then we aggregate these results for each portfolio according 
to its exposures to each commodity.  To aggregate the risk factors, it is 
convenient to represent the portfolio’s P&L as a linear function of the 
individual energy log-returns. Because the GH distributions are closed 
under linear transformations, when we aggregate the energy risk factors 
in a given portfolio, the linearized P&L distribution still belongs to the 
same class of GH distributions as does the vector of risk factors. Finally, 
we can adopt two alternative numerical implementations for calculating 
the risk measures. We can compute VaR and ES under the GH model by 
solving the integrals implicit in equations (3.4) and (3.5) numerically 
for the portfolio P&L distribution. Alternatively, we can apply Monte 
Carlo simulations, which are usually more effective and preferred in this 
context.

3.3.	 Model estimation

Our energy portfolios consist of energy commodity futures for crude 
oil, natural gas, coal, and electricity. These four commodities effectively 
represent a wide range of exposures to energy price risk. In all cases, 
we employ daily series of one-month ahead monthly futures contracts 
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traded on the New York Mercantile Exchange (NYMEX), which are the 
most liquid contracts for the four energy commodities analyzed.

The full-sample period runs more than six years from August 2005 to 
March 2012, and includes 1,640 daily observations. We consider all data 
since the launch of the PJM electricity futures in the NYMEX (April 
2003) until the day of the analysis (March 2012), but we drop the first 
observations (from April 2003 to August 2005), for which liquidity of 
electricity and coal futures was very scarce. To avoid in-sample over-
fitting and spurious findings, we reserve the last two years of data, from 
March 2010 to March 2012 (504 observations), for the out-of-sample 
investigation of the tail risk.

Figure 3.1 Relative Prices and QQ-plots
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across	 commodity	 returns.	 Electricity	 and	 natural	 gas	 returns	 exhibit	 significantly	
positive	 skewness	 for	 all	 periods,	 suggesting	 that	 positive	moves	 are	more	 frequent	
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Figure 3.1. Relative prices and QQ-plots
Exhibit 1 shows the price series of the energy futures from August 2005 to March
2012 (full-sample period). Exhibit 2 presents the sample quantiles of the daily
returns for the four energy commodities. The dashed lines represent the quantiles
of a standard normal distribution.

	

Figure	3.1	Relative	Prices	and	QQ-plots	
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four energy commodities from August 2005 to March 2012. Electricity 
has the highest volatility, kurtosis, and risk measures over the entire 
sample. It also shows extreme positive and negative daily moves, some 
larger than 30%. We observe non-negligible skewness across commodity 
returns. Electricity and natural gas returns exhibit significantly positive 
skewness for all periods, suggesting that positive moves are more 
frequent than negative ones in these markets.

The correlation coefficients between fuels (oil, gas, and coal), which to 
some extent represent substitute goods, range from 19% to 32% over 
the 2005-2010 period. In the 2010-2012 period, the correlations of oil 
and gas with coal increase to greater than 31%, whereas the correlation 
between oil and gas decreases from 28% to 12%. The linear dependence 
between electricity and fuels is less than 10% and only significant for 
oil and natural gas during 2005-2010. In the last period, correlation with 
coal increases to 10%.

We also conduct Mardia’s test of multivariate normality (not reported 
here). This test is based on multivariate measures of skewness and kurtosis. 
The large values that we obtain for the test statistics, corresponding to 
multivariate skewness and kurtosis measures, reject the null hypothesis 
of joint normality of energy returns.

The estimation of the multivariate GH models for the energy returns is 
carried out in two stages. The large dimension of the model prompts 
us to use this sequential approach to estimate the set of parameters. 
In the first stage, we carry out the quasi-maximum likelihood (QML) 
estimation of the dynamic regression model for the conditional mean and 
covariance. In the second stage, we obtain the ML parameter estimates 
of the different multivariate GH conditional distributions.

We observe different patterns in the variance equation, especially with 
respect to the leverage effect. For crude oil and natural gas, the parameter 
corresponding to the leverage effect, is positive and significant, which 
suggests that negative shocks have a stronger effect on variance than do 
positive ones. Coal and electricity do not indicate any such asymmetry 
in terms of the response of volatility to negative moves, which suggests 
that positive shocks could have more impact on variance. Volatility 
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persistence also is very large (>0.95) for fossil fuels but smaller for 
electricity variance (around 0.50).

When we consider the time-varying evolution of the correlation 
matrix for the vector of four energy returns, we find that dependence 
dynamics are strongly persistent. When we consider the dynamics of the 
correlation between pairs of energy returns, we also obtain significant, 
positive estimates of the asymmetry parameter; in particular, for natural 
gas and electricity. Such positive asymmetry in correlation seems sound 
from an economic perspective, because an increase in gas prices has a 
strong positive impact on the generation costs of peak-load electricity. 
We study this relationship between gas and electricity in depth when we 
analyze the tail risk of the gas-fired power plant portfolio.

The results of the fit of the conditional distributions offer strong evidence 
against multivariate normality, as we expected. First, the shape parameter 
estimates of the mixing distributions point to the presence of fat tails in 
the different GH models. In particular, for the T and skT distributions, the 
small value of the degree-of-freedom parameter indicates the existence 
of jumps and tail dependence. Similar arguments apply to the VG and 
NIG parameter estimates. Second, the asymmetry parameter estimates γ 
for the three skewed GH distributions (skT, VG, and NIG) are positive for 
all vector components, suggesting positive skewness in the multivariate 
conditional distribution of daily energy returns. We reach similar results 
when we re-estimate the GH conditional distributions throughout the 
out-of-sample period. 

To analyze the tails of the returns distribution of energy portfolios, we 
consider the following examples: a utility with different generation units, 
a gas-fired power plant, and equally weighted and minimum variance 
portfolios. Using the multivariate GH models previously estimated and 
knowing the portfolio weights, we can obtain a fitted distribution of 
portfolio returns for each GH model. Then, we compare the in-sample 
tail 
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fit of the estimated models graphically, by plotting the estimated loga-
rithmic density functions and the empirical log-density function of the 
portfolio.

To focus on the aggregate tail risk behavior, we display in Figure 3.2 
enlarged sections of the left and right tails of the energy portfolios. The 
circles represent the empirical probability density of portfolio return 
innovations. The left panel of each exhibit presents the left tail of a long 
position in the portfolio, and the right panel is the corresponding right 
tail. As expected from previous multivariate results, the distributions of 
portfolio returns show positive skewness and fat tails. We find that the 
Gaussian model (dotted line) clearly underestimates the extent of both 
tails, that is, the probability of extreme realizations.

The T and skT models better estimate the aggregate tail risk behavior, 
according to the plots in Figure 3.2. The slower tail decay of T and 
skT distributions (solid and dashed lines, respectively) causes them to 
outperform the tail fit of the VG and NIG models (marked with crosses 
and squares, respectively), especially for the right tail, which corresponds 
to losses of a short position in the energy portfolio. We also observe 
slight differences between the tail fits of the T and skT distributions, 
partially due to the asymmetric tail behavior of the skT distribution. 
Similar exhibits for equally weighted and minimum variance portfolios 
show that the left tail of the estimated skT distribution is above the T 
distribution, whereas the right tail is below it.

In the next section, we further consider the aggregate tail behavior of 
the energy portfolios’ loss distribution, looking at the out-of-sample 
performance of the VaR and ES measures.
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In the final part of the chapter, we compute VaR and ES over the out-of-
sample period for different horizons and confidence levels, characterizing 
the term structure of these risk measures for each GH model. Then, 
we test the out-of-sample performance of the forecast risk measures, 
assessing the relative ability of the various multivariate models at hand.

In addition to our GH models, we also calculate the portfolio risk 
measures using several approaches: a traditional variance-covariance 
method with multivariate unconditional Gaussian distribution (VC); 
the Riskmetrics procedure or exponentially weighted moving average 
model (EWMA), as first introduced by J.P. Morgan; the multivariate 
Gaussian GARCH with constant conditional correlation (CCC); and the 
non-parametric historical simulation method (HS).

Using the various multivariate approaches, we calculate the conditional 
risk measures (VaR and ES) of the four energy portfolios for horizons 
extending from 1 to 22 days.  By way of a sensitivity exercise to the cut-
off point selection, we also consider in our analyses different confidence 
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Figure 3.6. 1-day risk measures and violations
This figure presents the 1% 1-day VaR for three different approaches over the out-of-
sample period. Their corresponding violations are also reported. Triangles, circles,
and x-marks denote violations of the EWMA, conditional VG, and conditional
skewed T models, respectively.
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The smallest ES estimates are generally produced by the EWMA or 
Gaussian models (CCC and VC are not reported here, in the interest of 
clarity). The largest ES estimates among the GH models correspond to 
the distributions with polynomial (slower) tail decays, that is, to the T 
and skT distributions. The asymmetric pattern of the skT model produces 
slightly larger tail risk estimates than the T model for the long positions 
of the energy portfolios, especially for the equally weighted and mini-
mum variance portfolios.

The ordering of the ES estimates across GH methods is invariant to the 
forecast horizon.

In general, the tail risk estimates of the nonparametric HS are close to 
those of the T and skT models. The estimation windows characterized 
by turbulent periods of fuel returns are responsible for these large risk 
measure estimates of the HS approach; as we observe, only heavy-tailed 
distributions are able to produce similar tail risk patterns.

In practice, our interest lies in comparing (backtest) the h-horizon risk 
measures forecasts for long and short positions with the actual portfolio 
losses during the two-year out-of-sample period, from March 2010 to 
March 2012. Thus we can assess the differences in tail risk patterns, 
controlling for over-fitting and other spurious findings.
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16Figure 3.3 shows 1% 1-day VaR over the out-of-sample period according 

to three different approaches: the EWMA, VG, and skT models. In the 
lower side of the figure, we draw the VaR violations of each model, 
corresponding to the long position in the portfolio. In the upper side, 
we mark the VaR violations for the short position. In general, there are 
more violations across models for short positions than for long ones, in 
support of the positive asymmetry of the P&L distribution of the energy 
portfolios.

We also observe that the VG and skT estimates (grey and black lines, 
respectively) respond more quickly to changing volatility than does 
the EWMA estimate (dashed line), which tends to be violated several 
times in a row during more turbulent periods (violations of the EWMA 
risk measure are marked with triangles). In addition, the VaR violations 
of the skT estimate (crosses) are fewer than those of the VG estimate 
(circles), suggesting again the importance of modeling the presence of 
heavy tails to produce conservative tail risk measures.

Using the number of VaR violations for a given confidence level over 
the tested period, as well as the proportion of losses beyond that VaR 
estimate, we can build a series of backtests to monitor the out-of-sample 
performance of tail risk estimates. 

The results show that the more traditional parametric approaches, such 
as VC, EWMA, CCC, and Gaussian-DCC models, tend to underestimate 
the VaR, especially for short positions and for utility portfolios. The non-
parametric HS produces better coverage probabilities for these cases.

Comparing all models jointly to determine whether the differences in 
the tail patterns are statistically significant, we reject the claim that the 
(conditional and unconditional) Gaussian models, such as VC, EWMA, 
CCC, and G, perform as well as the best competing alternative model, 
with the possible exception of the long portfolio positions at 10-day 
horizons. These tests support our previous findings, namely that models 
with exponential tail decay (i.e., VG and NIG models) yield inferior 
tail estimates for short portfolio positions, especially for the far tail 
(alpha=1%) of utility portfolios at the 1-day horizon.
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3.5.	 Conclusions

In this chapter, we have characterized the tail behavior of energy price 
risk using a dynamic multivariate model. We approximated exposure 
to energy price risk for physical and financial players using linear 
combinations (portfolios) of crude oil, natural gas, coal, and electricity 
futures.

To model the stylized features of the vector of energy risk factors, we 
have proposed a flexible econometric specification. With respect to the 
conditional distribution, we considered the possibility that the vector of 
innovations may be generated by a multivariate GH distribution. With 
these distributions, we can model different dependence patterns (e.g., 
dependence in the extremes, positive or negative skewness) and tail 
decays (e.g., exponential vs. polynomial).

Our in-sample and out-of-sample results showed the importance of fat 
tails and positive skewness in the multivariate distribution of energy 
risk factors. We also proposed comparing the tail risk estimates corres-
ponding to the GH models and other more traditional procedures.

Regarding the tail risk of short positions, our backtest results confirmed 
that distributions with polynomial tail decay (heavy-tailed) outperformed 
alternative versions, especially for the utility portfolios. Ultimately, 
the extent to which we underestimate the tail risk of the portfolio loss 
distribution depends on the portfolio weights of the different energy 
commodities, whether we are analyzing the short or long trading 
position, and the horizon and confidence level considered.

It is worth mentioning that many power firms in liberalized markets 
have two main lines of business: electricity generation and electricity 
distribution. These days, and given the chronic generation overcapacity 
afflicting many developed markets (United States, Europe) most firms 
tend to focus more on the distribution business which implies an 
aggregate short position in electricity. The evidence we present suggests 
that conventional market risk measures (Gaussian VaR and ES) severely 
underestimate market risk under these circumstances. This fact should 
be taken into account not only by the company’s shareholders and 
creditors but also by market regulators and supervisors.
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4. Valuing Energy Real Assets: The case of an 
Interconnector

Electricity markets have undergone a series of fundamental changes 
sparked by the liberalization of this industry. The first stage of liberali-
zation required privatization of all or most of the generation assets, as 
well as privatization of the transmission grid which transports electrici-
ty from the generation points to the end consumer. Another important 
step in the development of the wholesale electricity markets is to exploit 
price differentials between locations by building interconnectors which 
are bidirectional transmission lines connecting the grids of two loca-
tions or the grids of two countries. Although interconnecting different 
grids is at the top of the political agenda in many countries, the decision 
to build them depends on their financial value.

Electricity prices are characterized by exhibiting extreme volatility and 
by undergoing abrupt changes (large upward spikes and large down-
ward jumps), as well as fast mean reversion to a seasonal trend. This 
extreme behavior is also present in the difference between prices of two 
locations and explains why interconnecting two markets could be pro-
fitable. The main question we address in this chapter is how to value an 
interconnector. One of the key features that drives the financial value 
of an interconnector is that the owner has the right, but not the obliga-
tion, to transmit electricity between two locations. Therefore, once it has 
been built, the financial value of an interconnector is given by a series 
of real options which are written on the price differential between two 
electricity markets.

In this chapter we propose a valuation tool that uses real options theory 
to consider the problem and we employ market data of five pairs of 
European neighboring countries to value hypothetical interconnectors 
under realistic assumptions. The value of an interconnector is given 
by a strip of European-style options (Bull Call Spreads) written on 
the spread between the two markets and the valuation formula is in 
closed-form and is quick to implement. Our model for the spread captures 
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the main characteristics of the dynamics of price differentials: jumps 
in both directions, high seasonal volatility, and fast mean reversion 
to a seasonal trend. We propose an algorithm to detect jumps where 
the emphasis is placed on avoiding misclassifying mean reversion as 
jumps. We estimate the parameters of the spread model and find that 
the introduction of jumps in the model delivers gains in the in-sample 
performance of between 20% and 48% with respect to a misspecified or     
“naïve" model in which jumps are not included.

We show valuations under different liquidity caps, which proxy for the 
depth of the interconnected power markets. We also derive no-arbitrage 
lower bounds for the value of the interconnector in terms of electricity 
futures contracts of the respective power markets.

We find that, depending on the depth of the market, the jumps in the spread 
can account for between 1% and 40% of the total value of the inter-
connector. The two markets where an interconnector would be most 
(resp. least) valuable are Germany and the Netherlands (resp. France 
and Germany). The markets where off-peak transmission between the 
two countries is more valuable than transmission during peak times are: 
France and Germany, France and UK, and the Netherlands and UK. We 
also provide “rules of thumb” to summarize the different drivers of the 
interconnector value.

4.1.	 Literature review and the market for interconnectors

In energy markets there are many projects whose value depends on the 
flexibility of being able to delay decision-making until more information 
becomes available. These decisions can include delaying or accelerating 
production, postponing entry, scaling production, changing technology, 
etc. In many cases the flexibility embedded in some types of project is 
what drives most of their value. For example, some electricity plants 
are only economically viable to operate when market prices are very 
high, otherwise they must be “switched off’’. Moreover, gas-fired plants 
are very valuable because relative to other plants (for instance nuclear 
and coal-fired ones) it is easier to ramp up or ramp down according to 
the level of market prices. Neglecting these embedded real options may 
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to deliver a negative NPV when in fact they are viable.

Real options in electricity markets are key components in project 
valuation. Power plants that offer operational flexibility derive most 
of their value from the option to produce electricity when prices are 
high. These options are valuable because wholesale electricity prices 
are extremely volatile, but the extreme behavior of power prices makes 
electricity prices a difficult commodity to model. Modeling power 
prices, and other contracts such as futures and forwards, can be found 
in Roncoroni (2002), Cartea and Figueroa (2005), and Escribano, Peña, 
and Villaplana (2011), among others.

An important feature common to all energy commodities is that their 
market value depends on the location and the date that the delivery of 
the commodity takes place. This is particularly important for electricity 
where date and location are crucial determinants of market clearing 
prices because electricity must be consumed immediately upon delivery, 
while consumption of other energy commodities such as gas and oil can 
be deferred by either postponing delivery or by storing them. In fact, 
as a consequence of the non-storability of electricity, one can think of 
electricity delivered over different intervals of the day, or throughout 
periods of the year, as different goods.

A further consequence of not being able to store electricity is that, strictly 
speaking, there are no electricity spot prices as commonly understood. 
Market clearing prices must be agreed prior to delivery at a time when 
production and demand are not known for sure; this uncertainty is 
resolved at the time when the physical transaction occurs. Therefore, 
the convention in the market and the literature is to treat the day-ahead 
prices as the spot prices, although their structure is more akin to that of 
a forward contract. Another standard way in which blocks of electricity 
are bundled is peak and off-peak. Peak hours correspond to a fixed 
interval of hours for business days characterized by high electricity 
demand, normally between 8am and 8pm. Off-peak hours belong to the 
interval between the end of a peak block and the beginning of the next 
one, and include the 24 hours of weekends’ days and holidays. 
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The owner of the interconnector capacity needs to schedule the flows 
according to prevailing market prices and the transmission costs in the 
two interconnected locations. In practice these decisions are generally 
taken on the day-ahead market. Thus, we assume that the decision to 
use the interconnector to dispatch electricity from A to B, or vice versa, 
is based on the peak and off-peak market prices observed in the day-
ahead market, net of transmission costs. Therefore, every day the owner 
of the interconnector capacity faces various alternatives. To commit to 
dispatching electricity the following day from A to B, or from B to A, 
during the peak and off-peak hours. To decide not to dispatch electricity 
in any direction during the peak and/or off-peak period.

4.2.	 Valuing interconnection capacity: a strip of real options

Our objective is to price the optionality provided by an interconnector 
that can exploit the wholesale electricity spot price differential between 
two markets. Every day the owner of the interconnector exercises the 
right to use the capacity to simultaneously buy electricity in market A, 
to sell the same quantity of electricity in market B, or vice versa. In other 
words, the owner of the capacity holds four daily European options: two 
options on the spread between A and B; and two options on the spread 
between B and A (one option for peak and the other for off-peak). Since 
each individual option is only for one day, we cannot cast the valuation 
problem in terms of futures contracts since the delivery period for these 
will be at least one month. Nevertheless the information provided by 
futures contracts can be used to determine no-arbitrage bounds for the 
European options on the spread.

The valuation problem thus reduces to being able to price European 
capped options. For ease of presentation let us focus on the spread 
between A and B, which we denote 
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the wholesale electricity spot price differential between two markets. Every day the 
owner of the interconnector exercises the right to use the capacity to simultaneously 
buy electricity in market A, to sell the same quantity of electricity in market B, or vice 
versa. In other words, the owner of the capacity holds four daily European options: two 
options on the spread between A and B; and two options on the spread between B and 
A (one option for peak and the other for off-peak). Since each individual option is only 
for one day, we cannot cast the valuation problem in terms of futures contracts since 
the delivery period for these will be at least one month. Nevertheless the information 
provided by futures contracts can be used to determine no-arbitrage bounds for the 
European options on the spread. 
 
The valuation problem thus reduces to being able to price European capped options. For 
ease of presentation let us focus on the spread between A and B, which we denote 
𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡), and assume that it is for peak electricity, without specifying the particular hour 
during the peak segment. 
 
Let 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡; 𝑇𝑇𝑇𝑇, 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) denote the price of a European call at time t, written on the 
spread  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) during peak time, but capping the maximum value at 𝑀𝑀𝑀𝑀 > 0, and 
expiring at a future date 𝑇𝑇𝑇𝑇 with strike price 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 < 𝑀𝑀𝑀𝑀. The option gives the right to 
transmit 1 MWh of electricity, during a designated hour of the day, but  for ease of 
notation we do not specify the particular hour of the day. The strike price represents 
the transmission costs between locations A and B, and time 𝑇𝑇𝑇𝑇 represents the time in 
future periods when the decision will be made whether to use the interconnector 
capacity. Then, the price of the call is given by 
 

 (4.1) 

 
where 𝜌𝜌𝜌𝜌 is the risk-adjusted discount rate. The valuation problem of the capped 
European call (4.1) is also known in the literature as a Bull Call Spread. Note that capping 
the states of nature where the value of the call exceeds the cap 𝑀𝑀𝑀𝑀 is equivalent to being 
long a standard European call option with strike 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 and short a standard European call 
option with strike 𝑀𝑀𝑀𝑀 written on the underlying 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡). Hence 
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The owner of the interconnector capacity needs to schedule the flows according to 
prevailing market prices and the transmission costs in the two interconnected locations. 
In practice these decisions are generally taken on the day-ahead market. Thus, we 
assume that the decision to use the interconnector to dispatch electricity from A to B, 
or vice versa, is based on the peak and off-peak market prices observed in the day-ahead 
market, net of transmission costs. Therefore, every day the owner of the interconnector 
capacity faces various alternatives. To commit to dispatching electricity the following 
day from A to B, or from B to A, during the peak and off-peak hours. To decide not to 
dispatch electricity in any direction during the peak and/or off-peak period. 
 

4.2 Valuing interconnection capacity: a strip of real options 
 
Our objective is to price the optionality provided by an interconnector that can exploit 
the wholesale electricity spot price differential between two markets. Every day the 
owner of the interconnector exercises the right to use the capacity to simultaneously 
buy electricity in market A, to sell the same quantity of electricity in market B, or vice 
versa. In other words, the owner of the capacity holds four daily European options: two 
options on the spread between A and B; and two options on the spread between B and 
A (one option for peak and the other for off-peak). Since each individual option is only 
for one day, we cannot cast the valuation problem in terms of futures contracts since 
the delivery period for these will be at least one month. Nevertheless the information 
provided by futures contracts can be used to determine no-arbitrage bounds for the 
European options on the spread. 
 
The valuation problem thus reduces to being able to price European capped options. For 
ease of presentation let us focus on the spread between A and B, which we denote 
𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡), and assume that it is for peak electricity, without specifying the particular hour 
during the peak segment. 
 
Let 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡; 𝑇𝑇𝑇𝑇, 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) denote the price of a European call at time t, written on the 
spread  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) during peak time, but capping the maximum value at 𝑀𝑀𝑀𝑀 > 0, and 
expiring at a future date 𝑇𝑇𝑇𝑇 with strike price 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 < 𝑀𝑀𝑀𝑀. The option gives the right to 
transmit 1 MWh of electricity, during a designated hour of the day, but  for ease of 
notation we do not specify the particular hour of the day. The strike price represents 
the transmission costs between locations A and B, and time 𝑇𝑇𝑇𝑇 represents the time in 
future periods when the decision will be made whether to use the interconnector 
capacity. Then, the price of the call is given by 
 

 (4.1) 

 
where 𝜌𝜌𝜌𝜌 is the risk-adjusted discount rate. The valuation problem of the capped 
European call (4.1) is also known in the literature as a Bull Call Spread. Note that capping 
the states of nature where the value of the call exceeds the cap 𝑀𝑀𝑀𝑀 is equivalent to being 
long a standard European call option with strike 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 and short a standard European call 
option with strike 𝑀𝑀𝑀𝑀 written on the underlying 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡). Hence 
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The owner of the interconnector capacity needs to schedule the flows according to 
prevailing market prices and the transmission costs in the two interconnected locations. 
In practice these decisions are generally taken on the day-ahead market. Thus, we 
assume that the decision to use the interconnector to dispatch electricity from A to B, 
or vice versa, is based on the peak and off-peak market prices observed in the day-ahead 
market, net of transmission costs. Therefore, every day the owner of the interconnector 
capacity faces various alternatives. To commit to dispatching electricity the following 
day from A to B, or from B to A, during the peak and off-peak hours. To decide not to 
dispatch electricity in any direction during the peak and/or off-peak period. 
 

4.2 Valuing interconnection capacity: a strip of real options 
 
Our objective is to price the optionality provided by an interconnector that can exploit 
the wholesale electricity spot price differential between two markets. Every day the 
owner of the interconnector exercises the right to use the capacity to simultaneously 
buy electricity in market A, to sell the same quantity of electricity in market B, or vice 
versa. In other words, the owner of the capacity holds four daily European options: two 
options on the spread between A and B; and two options on the spread between B and 
A (one option for peak and the other for off-peak). Since each individual option is only 
for one day, we cannot cast the valuation problem in terms of futures contracts since 
the delivery period for these will be at least one month. Nevertheless the information 
provided by futures contracts can be used to determine no-arbitrage bounds for the 
European options on the spread. 
 
The valuation problem thus reduces to being able to price European capped options. For 
ease of presentation let us focus on the spread between A and B, which we denote 
𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡), and assume that it is for peak electricity, without specifying the particular hour 
during the peak segment. 
 
Let 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡; 𝑇𝑇𝑇𝑇, 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) denote the price of a European call at time t, written on the 
spread  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) during peak time, but capping the maximum value at 𝑀𝑀𝑀𝑀 > 0, and 
expiring at a future date 𝑇𝑇𝑇𝑇 with strike price 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 < 𝑀𝑀𝑀𝑀. The option gives the right to 
transmit 1 MWh of electricity, during a designated hour of the day, but  for ease of 
notation we do not specify the particular hour of the day. The strike price represents 
the transmission costs between locations A and B, and time 𝑇𝑇𝑇𝑇 represents the time in 
future periods when the decision will be made whether to use the interconnector 
capacity. Then, the price of the call is given by 
 

 (4.1) 

 
where 𝜌𝜌𝜌𝜌 is the risk-adjusted discount rate. The valuation problem of the capped 
European call (4.1) is also known in the literature as a Bull Call Spread. Note that capping 
the states of nature where the value of the call exceeds the cap 𝑀𝑀𝑀𝑀 is equivalent to being 
long a standard European call option with strike 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 and short a standard European call 
option with strike 𝑀𝑀𝑀𝑀 written on the underlying 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡). Hence 
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16of electricity, during a designated hour of the day, but  for ease of 

notation we do not specify the particular hour of the day. The strike 
price represents the transmission costs between locations A and B, and 
time T represents the time in future periods when the decision will be 
made whether to use the interconnector capacity. Then, the price of the 
call is given by

	 (4.1)

where ρ is the risk-adjusted discount rate. The valuation problem of  
the capped European call (4.1) is also known in the literature as a Bull Call 
Spread. Note that capping the states of nature where the value of the call ex- 
ceeds the cap M is equivalent to being long a standard European call 
option with strike 
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The owner of the interconnector capacity needs to schedule the flows according to 
prevailing market prices and the transmission costs in the two interconnected locations. 
In practice these decisions are generally taken on the day-ahead market. Thus, we 
assume that the decision to use the interconnector to dispatch electricity from A to B, 
or vice versa, is based on the peak and off-peak market prices observed in the day-ahead 
market, net of transmission costs. Therefore, every day the owner of the interconnector 
capacity faces various alternatives. To commit to dispatching electricity the following 
day from A to B, or from B to A, during the peak and off-peak hours. To decide not to 
dispatch electricity in any direction during the peak and/or off-peak period. 
 

4.2 Valuing interconnection capacity: a strip of real options 
 
Our objective is to price the optionality provided by an interconnector that can exploit 
the wholesale electricity spot price differential between two markets. Every day the 
owner of the interconnector exercises the right to use the capacity to simultaneously 
buy electricity in market A, to sell the same quantity of electricity in market B, or vice 
versa. In other words, the owner of the capacity holds four daily European options: two 
options on the spread between A and B; and two options on the spread between B and 
A (one option for peak and the other for off-peak). Since each individual option is only 
for one day, we cannot cast the valuation problem in terms of futures contracts since 
the delivery period for these will be at least one month. Nevertheless the information 
provided by futures contracts can be used to determine no-arbitrage bounds for the 
European options on the spread. 
 
The valuation problem thus reduces to being able to price European capped options. For 
ease of presentation let us focus on the spread between A and B, which we denote 
𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡), and assume that it is for peak electricity, without specifying the particular hour 
during the peak segment. 
 
Let 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡; 𝑇𝑇𝑇𝑇, 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) denote the price of a European call at time t, written on the 
spread  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) during peak time, but capping the maximum value at 𝑀𝑀𝑀𝑀 > 0, and 
expiring at a future date 𝑇𝑇𝑇𝑇 with strike price 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 < 𝑀𝑀𝑀𝑀. The option gives the right to 
transmit 1 MWh of electricity, during a designated hour of the day, but  for ease of 
notation we do not specify the particular hour of the day. The strike price represents 
the transmission costs between locations A and B, and time 𝑇𝑇𝑇𝑇 represents the time in 
future periods when the decision will be made whether to use the interconnector 
capacity. Then, the price of the call is given by 
 

 (4.1) 

 
where 𝜌𝜌𝜌𝜌 is the risk-adjusted discount rate. The valuation problem of the capped 
European call (4.1) is also known in the literature as a Bull Call Spread. Note that capping 
the states of nature where the value of the call exceeds the cap 𝑀𝑀𝑀𝑀 is equivalent to being 
long a standard European call option with strike 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 and short a standard European call 
option with strike 𝑀𝑀𝑀𝑀 written on the underlying 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡). Hence 

 and short a standard European call option with 
strike M written on the underlying 
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The owner of the interconnector capacity needs to schedule the flows according to 
prevailing market prices and the transmission costs in the two interconnected locations. 
In practice these decisions are generally taken on the day-ahead market. Thus, we 
assume that the decision to use the interconnector to dispatch electricity from A to B, 
or vice versa, is based on the peak and off-peak market prices observed in the day-ahead 
market, net of transmission costs. Therefore, every day the owner of the interconnector 
capacity faces various alternatives. To commit to dispatching electricity the following 
day from A to B, or from B to A, during the peak and off-peak hours. To decide not to 
dispatch electricity in any direction during the peak and/or off-peak period. 
 

4.2 Valuing interconnection capacity: a strip of real options 
 
Our objective is to price the optionality provided by an interconnector that can exploit 
the wholesale electricity spot price differential between two markets. Every day the 
owner of the interconnector exercises the right to use the capacity to simultaneously 
buy electricity in market A, to sell the same quantity of electricity in market B, or vice 
versa. In other words, the owner of the capacity holds four daily European options: two 
options on the spread between A and B; and two options on the spread between B and 
A (one option for peak and the other for off-peak). Since each individual option is only 
for one day, we cannot cast the valuation problem in terms of futures contracts since 
the delivery period for these will be at least one month. Nevertheless the information 
provided by futures contracts can be used to determine no-arbitrage bounds for the 
European options on the spread. 
 
The valuation problem thus reduces to being able to price European capped options. For 
ease of presentation let us focus on the spread between A and B, which we denote 
𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡), and assume that it is for peak electricity, without specifying the particular hour 
during the peak segment. 
 
Let 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡; 𝑇𝑇𝑇𝑇, 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) denote the price of a European call at time t, written on the 
spread  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) during peak time, but capping the maximum value at 𝑀𝑀𝑀𝑀 > 0, and 
expiring at a future date 𝑇𝑇𝑇𝑇 with strike price 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 < 𝑀𝑀𝑀𝑀. The option gives the right to 
transmit 1 MWh of electricity, during a designated hour of the day, but  for ease of 
notation we do not specify the particular hour of the day. The strike price represents 
the transmission costs between locations A and B, and time 𝑇𝑇𝑇𝑇 represents the time in 
future periods when the decision will be made whether to use the interconnector 
capacity. Then, the price of the call is given by 
 

 (4.1) 

 
where 𝜌𝜌𝜌𝜌 is the risk-adjusted discount rate. The valuation problem of the capped 
European call (4.1) is also known in the literature as a Bull Call Spread. Note that capping 
the states of nature where the value of the call exceeds the cap 𝑀𝑀𝑀𝑀 is equivalent to being 
long a standard European call option with strike 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 and short a standard European call 
option with strike 𝑀𝑀𝑀𝑀 written on the underlying 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡). Hence . Hence

	 (4.2)

Where the standard European call is given by Equation (4.1) with 
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Where the standard European call is given by Equation (4.1) with 𝑀𝑀𝑀𝑀 = ∞. 
 
Generally, rights to interconnector capacity are sold over a period of time that covers a 
number of years and represents a significant proportion of the life of the 
interconnection assets. For expository purposes we will assume that the rights are in the 
form of a one-year lease and we value a lease for capacity of 1 MWh during peak times 
and 1 MWh during off-peak times. The value of the interconnector lease is given by the 
sum of all the capped European call options (one for every day of transmission from A 
to B and from B to A) between time t and expiry of the lease contract. 
 

4.3 Modelling electricity spot price differentials 
 
Modeling electricity prices, and other financial instruments related to this market, is 
quite recent in the academic literature. For instance, the work of Schwartz (1997) and 
Schwartz and Smith (2000) which considered storable commodities served as a platform 
for a number of articles that proposed no-arbitrage models for the dynamics of 
electricity prices. 
 
Since the valuation of the call options embedded in the interconnector capacity is cast 
within the real options framework, the emphasis must be placed on a model that is 
specified under the statistical measure. Instead of estimating the parameters for the 
two markets A and B, we can value the interconnector capacity by modeling the 
difference in prices directly. Therefore, we can estimate the parameters of the spread 
model and use it as the departure point to value the European call options on the 
spread. 
 
Here we propose a model for the spread in the spirit of the no-arbitrage spot price 
models which captures the most important features of the price dynamics, that is: large 
price spikes or jumps, strong mean reversion of large deviations and the presence of a 
seasonal component. In addition, we obtain the following three desired properties. First, 
the spread model also exhibits the stylized characteristics observed in the price 
difference between two locations, specifically large positive and negative deviations 
that mean revert very quickly to a seasonal trend. Second, the estimation of the spread 
model parameters can be achieved with the usual techniques. Third, the spread model 
specification enables us to calculate the price of European-style options by employing 
standard tools. 
 
We propose, under the statistical measure, the following arithmetic model for the price 
differences between locations A and B, 

 (4.2) 

 
 

.

Generally, rights to interconnector capacity are sold over a period of time 
that covers a number of years and represents a significant proportion of 
the life of the interconnection assets. For expository purposes we will 
assume that the rights are in the form of a one-year lease and we value 
a lease for capacity of 1 MWh during peak times and 1 MWh during off-
peak times. The value of the interconnector lease is given by the sum of all 
the capped European call options (one for every day of transmission from 
A to B and from B to A) between time t and expiry of the lease contract.

4.3.	 Modelling electricity spot price differentials

Modeling electricity prices, and other financial instruments related to this 
market, is quite recent in the academic literature. For instance, the work 
of Schwartz (1997) and Schwartz and Smith (2000) which considered 

w
w
w
.e
di
to
ria
lu
c.
es



Carlos González Pedraz
Cu

ad
er

no
s 

de
 In

ve
st

ig
ac

ió
n 

U
CEI

F
 19

/2
0

16

58

storable commodities served as a platform for a number of articles that 
proposed no-arbitrage models for the dynamics of electricity prices.

Since the valuation of the call options embedded in the interconnector 
capacity is cast within the real options framework, the emphasis must be 
placed on a model that is specified under the statistical measure. Instead 
of estimating the parameters for the two markets A and B, we can value 
the interconnector capacity by modeling the difference in prices directly. 
Therefore, we can estimate the parameters of the spread model and use it 
as the departure point to value the European call options on the spread.

Here we propose a model for the spread in the spirit of the no-arbitrage 
spot price models which captures the most important features of the price 
dynamics, that is: large price spikes or jumps, strong mean reversion of 
large deviations and the presence of a seasonal component. In addition, 
we obtain the following three desired properties. First, the spread model 
also exhibits the stylized characteristics observed in the price difference 
between two locations, specifically large positive and negative deviations 
that mean revert very quickly to a seasonal trend. Second, the estimation 
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Figure 4.2. Examples of detecting jumps from the jump diffusion process

This figure shows the spread series Si,j (Euros/MWh) for the two possible load
regimes, peak and off-peak, for three examples of interconnection. The dashed
line represents the 95% confidence intervals for the deterministic component for
each series. The gray circles below the lower confidence bound mark the presence
of a negative jump, while the black circles above the upper confidence bound show
the position of a positive jump.
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jumps. We consider seasonal patterns in the trend, as well as in the volatility of the 
Gaussian component and in the intensity of the jumps. 
 
Once we have the model for the price differences, we can proceed to value the 
European call options on the spread. The value of the call option is expressed in closed-
form in Fourier space (see details in Cartea and González-Pedraz (2011)). 
 
We apply a recursive semi-parametric filter to identify the calendar position of the 
jumps in the spread. The procedure identifies a hypothetical arrival of a jump when the 
detrended spread difference deviates, in absolute value, by more than three standard 
deviations from its mean. Once we have identified the jumps, we estimate their intensity 
by maximum likelihood. We analyze two scenarios, one where intensities are constant, 
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constant, and the other where intensities are time-dependent and may 
exhibit a seasonal pattern. In 16 out of 20 cases, we reject the model 
with constant intensity at a 10% significance level. In Figure 4.1 we 
show the positions of negative and positive jumps for some of the mar-
kets we study.

The last step of the estimation consists of estimating the mean-reversion 
rates of the Gaussian process X(t) and jump process Y(t), and the volatility 
parameters of X(t) by minimizing the mean-squared errors which are 
given by the average of the squared differences between the observed 
and the modeled spreads. Results show that spreads show significant 
mean reversion in jumps and in the Gaussian deviations. The half-life of 
the jumps ranges between 1 and 15 days approximately. 

The introduction of jumps in the model delivers gains in the in-sample 
performance of between 20% and 48% compared to a “naïve” version, 
for which we do not include the jump process.

4.4.	 The market value of interconnectors

In this section we discuss the results of valuing interconnection capacity 
in neighboring European countries. We calculate the market value of 
a one-year lease of an interconnector that gives the lessee the right, 
but not the obligation, to transmit 1 MWh of electricity between two 
markets during peak and off-peak times.

We provide different values of the interconnector, which result from 
different assumptions about: the seasonal function of the spread; the 
liquidity and depth in both markets; and how jumps affect the extrinsic 
value of the real options used to calculate the value of the interconnector.

As discussed above, it does not seem plausible to exploit large price 
differentials due to liquidity reasons in the two markets. We cap the 
maximum price differentials that can be profited from at different 
levels:  M in {10, 20, 30, 40, 50, ∞} Euros/MWh, where we allow M = ∞ 
to include the hypothetical case where there are no liquidity constraints 
in the day-ahead market.
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available to the manager of the lease: transmit electricity from A to B 
and from B to A for both on-peak and off-peak segments of the day. 
Note that these values are for the use of the interconnector during the 
365 days of the one-year lease. The total value of the lease is given by 
the sum of the four options.

The effect of the liquidity cap is different across the markets we study. 
For example, if the cap between Germany and the Netherlands is reduced 
from M = ∞ to M = 50 Euros/MWh, the value of the interconnector 
decreases by almost 75%. If we draw the same comparison in the UK–
Netherlands market, the value of the interconnector only decreases by 
8%. These different effects of the liquidity cap are due to the particular 
characteristics of the spread in each market: seasonal component, 
volatility of the OU process, jump intensities and jump sizes. Depending 
on the depth of the market, results 
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Figure 4.3. Empirical no-arbitrage bounds

Dashed, straight lines show the corresponding interconnector value of Table 4.5 for
different liquidity constraints M = 10, 20, 40 and Œ. Figure also shows the bounds
(Eur/MWh) computed from equations (4.9) and (4.10) for peak hours and the
respective ones for off-peak hours. The no-arbitrage bounds resulting from buying
a forward contract in location B, and shorting a forward contract for location A
(bound AæB) are depicted by a solid line. Similarly, the dotted line represents
the bound resulting from being long a forward contract in location A, and short a
forward in location B (bound BæA).
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Dashed, straight lines show the corresponding interconnector value of Table 4.5 for
different liquidity constraints M = 10, 20, 40 and Œ. Figure also shows the bounds
(Eur/MWh) computed from equations (4.9) and (4.10) for peak hours and the
respective ones for off-peak hours. The no-arbitrage bounds resulting from buying
a forward contract in location B, and shorting a forward contract for location A
(bound AæB) are depicted by a solid line. Similarly, the dotted line represents
the bound resulting from being long a forward contract in location A, and short a
forward in location B (bound BæA).
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We can observe that the bounds exhibit considerable variation over time. 
These pronounced changes in the bounds are a reflection of changes 
in futures prices due to changes in: market expectations, fuel prices, 
changes in risk-premia, weather predictions, etc.

4.5.	 Conclusions

In this chapter we show how to value an electricity interconnector as 
an asset that gives the owner the optionality to manage electricity flows 
between two markets. In financial terms, the value of the interconnector 
is the same as a strip of real options written on the spread between the 
power prices of two markets. We model the spread prices based on a: 
seasonal trend, mean-reverting Gaussian process, and mean-reverting 
jump process.
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16As a first contribution, we express the value of these real options in 

closed-form in the presence of mean-reverting jumps processes. We also 
propose a methodology to detect jumps in the spread that addresses the 
possible miss-classification of mean reversion as jumps. We estimate 
the parameters of the spread model and find that the introduction of 
jumps in the model delivers significant gains in the in-sample perfor-
mance.

Although we cast the problem in terms of real options, where the 
statistical distribution of the spread and the risk-adjusted discount rate 
are key ingredients in the valuation, we also derive no-arbitrage lower 
bounds for the value of the interconnector in terms of electricity futures 
contracts. 
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5. Risk Premium in Commodity Markets

Trying to understand the price behavior of commodities has a long 
tradition in the finance literature and is a long standing issue for 
stakeholders in commodity markets. On the one hand, there are market 
participants with exposure to spot price risks because they produce or 
consume the commodity. On the other hand, there are those that have 
no need to purchase or sell the commodity, but enter the market for 
speculative purposes. Either way, both types need to understand not 
only the behavior of spot prices but also the dynamics of the financial 
instruments written on the commodities so that decisions about bearing 
spot price risk, hedging, and speculation can be made.

From a reduced-form modeling perspective there are two possible ways 
to model price behavior. One way is first to build a model for commodity 
prices that tries to capture the main features of the price dynamics under 
both the data generating measure and risk-adjusted measure. The alter-
native way is to specify a reduced-form model under the risk-adjusted 
measure and place less importance on the dynamics of the commodi-
ty under the data generating measure. This second approach, although 
desirable in some cases, is built at the expense of not capturing some  
of the characteristics exhibited by price dynamics of the commodity un-
der the data generating measure which in some cases, such as in energy 
commodities, might be an undesirable feature.

Our departure point in this chapter is that an important proportion of 
market participants are exposed to spot price commodity risk and it is 
their needs to hedge their positions the key factor which brings them 
to market to trade derivatives instruments to manage their exposures. 
Therefore, understanding the dynamics of commodities under the data 
generating measure is as important as understanding the dynamics of 
prices under the risk-adjusted measure. The main questions we set out to 
answer here are: how are the data generating and risk-adjusted measures 
related? How can we reconcile the behavior of the physical dynamics of 
spot prices with those of the different forwards with different expiries?
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key elements that market participants price according to their risk 
preferences? What are the main risks that different stakeholder wish to 
offload? What happens to the risks that are being managed across different 
time horizons? What are futures contracts insurance for? Although our 
discussion could be applied to a wide variety of commodities, especially 
those whose prices tend to show a degree of mean reversion, we focus 
on two energy commodities: gas and electricity.

In general, establishing the link between the data generating measure 
and the risk-neutral measure in asset pricing is a difficult task because of 
market incompleteness. In energy markets in particular, the connection 
between these two measures is less well understood and has been 
overlooked in most cases, especially in electricity. So far, most of the 
reduced-form models for gas and electricity lack either a more realistic 
representation of prices under the data generating measure, or a better 
specification of the risk-adjusted measure to reconcile the dynamics of 
derivative instruments, for instance futures or forward contracts across 
different maturities.

This chapter contributes to the literature on the pricing of risk in commodities 
by proposing a parsimonious reduced-form model that can capture the 
main characteristics of commodity prices under the data generating 
measure and show that there is a family of risk-adjusted measures capable 
of capturing the fact that market participants may overstate (understate) 
the probability of occurrence of undesirable (desirable) events.

In particular we show that participants in energy markets price financial 
instruments under the risk-adjusted measure by modifying how long 
deviations from the seasonal component may last. In the most general 
version of our model there are three factors out of which two are mean 
reverting: one factor is an Ornstein-Uhlenbeck (OU) driven by Brownian 
motion and the other factor is a mean reverting jump process with 
positive and negative jumps.

Until now, all reduced-form models that specify jumps in prices under the 
data generating measure assume that under the risk-adjusted measure 
the jump component has all or most of the following characteristics: 
a) jumps are non-systematic or that the market-price of jump risk is 
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zero; b) jumps have the same arrival structure under both measures; c) 
the distribution of jump sizes is the same under both measures; and d) 
the speed at which jumps mean revert is the same under both the data 
generating and risk-adjusted measures.

Assumptions a) to d)  are at odds with the evidence observed in gas and 
power markets because forward contracts are in most cases bought (resp. 
sold) by consumers (resp. producers) of the commodity as insurance 
against large upward (resp. downward) price deviations that would have 
an adverse effect on their profits. For instance, assuming that jumps are 
non-systematic implies that in the cross section of futures prices the 
presence of jumps does not affect futures prices.

Assuming that spot prices mean revert at the same speed under both 
measures makes it difficult to reconcile the spot and forwards model 
dynamics with observed market prices. The family of risk-adjusted 
measures that we propose allow for the mean reversion of the jump 
component of spot prices to be different between the two measures.

In the empirical part, we estimate our model using the Bayesian infer-
ence for two types of energy commodities, natural gas and power. Spe-
cifically, we implement a Markov Chain Monte Carlo (MCMC) estimation 
scheme, which accounts for parameter uncertainty. Our results suggest 
that the degree of mean reversion under the physical and the risk-ad-
justed measures differ. 

5.1.	 Literature review and a model for the spot

Reduced-form models for storable commodities have been around for 
a long time. Gibson and Schwartz (1990) propose a two-factor model 
where spot prices follow a geometric Brownian motion and the stochastic 
convenience yield follows an OU mean reverting process under the data 
generating measure. They propose a risk-adjusted measure which results 
from introducing a market-price of convenience yield risk in the form of 
a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices 
under both the data generating and risk-adjusted measure is induced 
by the mean reversion in the convenience yield. This model is extended 
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Reis (1998) further extend the model to include jumps in the spot price 
process. Another common feature to all these models is that when one 
of the factors of the model is mean reverting then the speed of mean 
reversion will be the same under both the data generating and risk-
adjusted measure.

Casassus and Collin-Dufresne (2005) propose a three-factor model of spot 
prices, convenience yields and interest rates. The factor dynamics are 
driven by OU Brownian motion processes. The connection between the data 
generating measure and the risk-adjusted measure is introduced via a state 
dependent market price of risk for each factor. The immediate implication 
is that under the data generating measure the speed of mean reversion of 
spot prices, convenience yields, and interest rates can be different from the 
speed of mean reversion under the risk-adjusted measure. 

We propose a reduced-form, arithmetic model for commodity spot 
prices; and a new, more flexible change of measure, for which pricing 
and calibration of basic building blocks such as futures contracts can be 
performed analytically.

Let 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

 be the vector of state variables 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

. The evo-
lution of the state variables 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

 under the real probability measure P 
is given by

	 (5.1)

where 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

; and 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

 and 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

 are 
independent Brownian motions and 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

 is an independent compound 
Poisson process with intensity parameter λ and jump sizes distributed as 
a normal distribution. Here 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

 is a 3x3 diagonal matrix that reflects the 
mean-reversion rates of the state variables under the physical measure P. 
The 3x3 lower triangular matrix 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  

 (5.2) 

 defines the dependence between 
Gaussian state variables.

Under the physical measure, the spot price process 

 42 

5.1 Literature review and a model for the spot 
 

Reduced-form models for storable commodities have been around for a long time. 
Gibson and Schwartz (1990) propose a two-factor model where spot prices follow a 
geometric Brownian motion and the stochastic convenience yield follows an OU mean 
reverting process under the data generating measure. They propose a risk-adjusted 
measure which results from introducing a market-price of convenience yield risk in the 
form of a linear shift in the distribution of the convenience yield under the data 
generating measure. In their model the mean reversion of spot prices under both the 
data generating and risk-adjusted measure is induced by the mean reversion in the 
convenience yield. This model is extended in Schwartz (1997) and applied to oil, gold 
and copper. Hilliard and Reis (1998) further extend the model to include jumps in the 
spot price process. Another common feature to all these models is that when one of the 
factors of the model is mean reverting then the speed of mean reversion will be the 
same under both the data generating and risk-adjusted measure. 
 
Casassus and Collin-Dufresne (2005) propose a three-factor model of spot prices, 
convenience yields and interest rates. The factor dynamics are driven by OU Brownian 
motion processes. The connection between the data generating measure and the risk-
adjusted measure is introduced via a state dependent market price of risk for each 
factor. The immediate implication is that under the data generating measure the speed 
of mean reversion of spot prices, convenience yields, and interest rates can be different 
from the speed of mean reversion under the risk-adjusted measure.  
 
We propose a reduced-form, arithmetic model for commodity spot prices; and a new, 
more flexible change of measure, for which pricing and calibration of basic building 
blocks such as futures contracts can be performed analytically. 
 
Let 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) be the vector of state variables  (𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡), 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡))′. The evolution of the 
state variables 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) under the real probability measure 𝑃𝑃𝑃𝑃 is given by 

 (5.1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡)�
′
; and 𝑑𝑑𝑑𝑑1(𝑡𝑡𝑡𝑡) and 𝑑𝑑𝑑𝑑2(𝑡𝑡𝑡𝑡) are independent 

Brownian motions and 𝑑𝑑𝑑𝑑3(𝑡𝑡𝑡𝑡) is an independent compound Poisson process with 
intensity parameter 𝜆𝜆𝜆𝜆 and jump sizes distributed as a normal distribution. Here 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 is a 
3x3 diagonal matrix that reflects the mean-reversion rates of the state variables under 
the physical measure 𝑃𝑃𝑃𝑃. The 3x3 lower triangular matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 defines the dependence 
between Gaussian state variables. 
 
Under the physical measure, the spot price process 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) can be decomposed into a 
stochastic component defined by the state variables and a deterministic component. 
Notice that the model is arithmetic and allows eventually for possible negative prices in 
the spot. 
 
We now consider the following change of measure 𝑄𝑄𝑄𝑄:  
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We now consider the following change of measure Q: 

	 (5.2)

with 

	 (5.3)

Avoiding the technical details, whit this change of measure, we are 
considering possible changes in the mean-reversion rate under Q for 
the mean-reverting Gaussian and mean-reverting jump processes. Then, 
under the Q-measure, the dynamics of state variable vector 
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changes in the mean-reversion rate under 𝑄𝑄𝑄𝑄 for the mean-reverting Gaussian and mean-
reverting jump processes. Then, under the 𝑄𝑄𝑄𝑄-measure, the dynamics of state variable 
vector 𝑋𝑋𝑋𝑋(𝑡𝑡𝑡𝑡) is given by 
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where 𝐴𝐴𝐴𝐴𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 − 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄; and 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 and is a diagonal matrix of constant parameters. 
 
The effect of the stochastic terms 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) in the measure change can be seen as a 
complete shift by a constant. When 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) is low or for 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄,𝑖𝑖𝑖𝑖 = 0, we essentially have the 
usual transform rescaling. But if, for example, the process 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) exhibits large shocks, 
we shift the whole compensator measure by a factor. In the case of the jump process, 
this shift could be interpreted as if we rescale the jump intensity in the compound 
Poisson process. That is, if this is a negative (positive) rescaling, we lessen (intensify) the 
compound Poisson process under 𝑄𝑄𝑄𝑄. 
 
The futures price 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡, 𝑇𝑇𝑇𝑇) at time 𝑡𝑡𝑡𝑡 of a contract to deliver one unit of commodity at time 
𝑇𝑇𝑇𝑇 > 𝑡𝑡𝑡𝑡 is defined as the expected spot price under the risk-adjusted probability measure 
𝑄𝑄𝑄𝑄. For energy's futures contracts, instead of a single maturity time, every contract 
specifies a delivery period, which are typically a month, quarter, season, or even year. 
Hence, if 𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡, 𝑇𝑇𝑇𝑇1, 𝑇𝑇𝑇𝑇2) denotes the market price for an energy's futures contract with time 
𝑇𝑇𝑇𝑇1 until maturity and delivery period [𝑇𝑇𝑇𝑇1, 𝑇𝑇𝑇𝑇2], then 

 
(5.5) 

Where 𝑡𝑡𝑡𝑡 < 𝑢𝑢𝑢𝑢 and 𝑇𝑇𝑇𝑇1 ≤ 𝑢𝑢𝑢𝑢 ≤ 𝑇𝑇𝑇𝑇2. Therefore, by definition, we have that 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1). 
 
Furthermore, lets define the risk premium for 𝑄𝑄𝑄𝑄 as the difference between the futures 
price and the predicted spot price. The theory of normal backwardation says that 
producers are willing to pay a premium for having their production hedged, implying a 
positive risk premium. In electricity, there is some empirical evidence for negative risk 
premium in the short end, that is, for contracts close to maturity. Under our 
specification, we may observe a change in the sign of the risk premium, for example, 
from positive to negative along the forward curve, a change which is stochastically 
dependent on the price factors 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡). 
 

5.2 Econometric methodology and data 
 
This section describes the estimation problem when both spot and futures prices are 
observed. Our implementation is based on an MCMC simulation that provides inference 
for unobserved state variables and model parameters given information under both 
probability measures. 
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5.2.	 Econometric methodology and data

This section describes the estimation problem when both spot and fu-
tures prices are observed. Our implementation is based on an MCMC 
simulation that provides inference for unobserved state variables and 
model parameters given information under both probability measures.
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inference	 for	 unobserved	 state	 variables	 and	 model	 parameters	 given	 information	
under	both	probability	measures.	
	

	
Consider	 the	 observations	 of	 spot	 prices	 and	monthly	 futures	 prices	 for	N	 different	
maturities 	 with	 	 We	 assume	 that	 market	 prices	 for	 these	
instruments	 are	 observed	 with	 independent	 pricing	 errors	 with	 respect	 to	 the	
theoretical	values;	which,	in	our	model	specification,	are	determined	by	the	vector	of	
state	 variables	 	 and	 the	 set	 of	 model	 parameters	 .	 There	 are	 mainly	 two	
motivations	 for	 adding	 an	 additive	 pricing	 error:	 to	 consider	 the	 possibility	 that	 the	
model	 can	be	misspecified	 and	 that	 there	 can	be	measure	 errors	 related	with	 noisy	
price	observations.	
	
The	specification	of	the	pricing	errors	allows	us	to	describe	the	conditional	 likelihood	
of	 the	 set	 of	 observations,	 	 Then,	 the	 inference	 problem	 consists	 of	 the	
computation	of	the	joint	posterior	density	of	latent	variables	and	parameters:	

p(X,⇥|Y ) / p(Y |X,⇥)p(X|⇥)p(⇥) .	 (5.6)	

The	MCMC	 approach	 provides	 a	method	 to	 sample	 parameters	 and	 latent	 variables	
from	their	joint	posterior	density	(Johannes	and	Polson,	2009).		
	
The	 empirical	 analysis	 of	 this	 chapter	 is	 based	on	 a	 sample	of	 spot	 (day	 ahead)	 and	
futures	prices	of	natural	gas	and	electricity.	In	particular,	we	use	daily	data	of	monthly	
futures	 contracts	 of	 natural	 gas	 and	 electricity,	 both	 traded	 at	 the	 Intercontinental	
Exchange	(ICE)	in	pence/therm	and	pounds/MWh,	respectively.	We	consider	contracts	
with	maturities	1,	3,	6,	and	9	months.	Delivery	 is	made	equally	each	day	throughout	
delivery	period,	in	this	case,	one	month.	Figure	5.1	exhibits	the	price	of	spot,	M1,	and	
M9	contracts	on	natural	gas	and	electricity	over	their	respective	sample	periods.	
	

5.3 	Empirical	results	

154
5.M

ean-reversion
rate

and
risk

prem
ium

in
com

m
odity

m
arkets

NBP Natural Gas UKPX Electricity

Mar03 Aug04 Feb06 Aug07 Jan09 Jul10 Dec11 Jun13
0

50

100

150

S
(t

)

Sep04 Nov05 Jan07 Mar08 May09 Aug10 Oct11 Dec12
0

50

100

150

200

S
(t

)

Mar03 Aug04 Feb06 Aug07 Jan09 Jul10 Dec11 Jun13
0

20

40

60

80

100

120

F
(t

,T
1
,T

2
)

 

 

M1 M9

Sep04 Nov05 Jan07 Mar08 May09 Aug10 Oct11 Dec12
0

50

100

150

F
(t

,T
1
,T

2
)

 

 

M1 M9

Figure 5.1. Spot and futures prices
The figure shows, in the first column, the series of spot prices (S(t)) and, in the second column, the 1-month and 9-month (M1
and M9) futures contracts (F (t, T1, T2)) on the NBP Natural Gas and UKPX Electricity. The samples range from March 13, 2003 to
June 17, 2013 and September 14, 2004 to December 7, 2012, respectively. Natural gas prices are in GB pence per Therm, and
electricity prices are in GB pounds per MWh.
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state variables 𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 and the set of model parameters 𝛩𝛩𝛩𝛩. There are mainly two motivations 
for adding an additive pricing error: to consider the possibility that the model can be 
misspecified and that there can be measure errors related with noisy price observations. 
 
The specification of the pricing errors allows us to describe the conditional likelihood of 
the set of observations, 𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌|𝑋𝑋𝑋𝑋, 𝛩𝛩𝛩𝛩). Then, the inference problem consists of the 
computation of the joint posterior density of latent variables and parameters: 
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The MCMC approach provides a method to sample parameters and latent variables from 
their joint posterior density (Johannes and Polson, 2009).  
 
The empirical analysis of this chapter is based on a sample of spot (day ahead) and 
futures prices of natural gas and electricity. In particular, we use daily data of monthly 
futures contracts of natural gas and electricity, both traded at the Intercontinental 
Exchange (ICE) in pence/therm and pounds/MWh, respectively. We consider contracts 
with maturities 1, 3, 6, and 9 months. Delivery is made equally each day throughout 
delivery period, in this case, one month. Figure 5.1 exhibits the price of spot, M1, and 
M9 contracts on natural gas and electricity over their respective sample periods. 
 

5.3 Empirical results 
 
Given the samples of the posterior distributions for the parameter vector and the state 
variables, we can obtain straightforward the Monte Carlo estimate of the mean of 
parameters and latent variables. Our estimates take into account parameter  
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prices for these instruments are observed with independent pricing er-
rors with respect to the theoretical values; which, in our model speci-
fication, are determined by the vector of state variables 
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The MCMC approach provides a method to sample parameters and latent 
variables from their joint posterior density (Johannes and Polson, 2009). 

The empirical analysis of this chapter is based on a sample of spot (day 
ahead) and futures prices of natural gas and electricity. In particular, we 
use daily data of monthly futures contracts of natural gas and electric-
ity, both traded at the Intercontinental Exchange (ICE) in pence/therm 
and pounds/MWh, respectively. We consider contracts with maturities 
1, 3, 6, and 9 months. Delivery is made equally each day throughout 
delivery period, in this case, one month. Figure 5.1 exhibits the price 
of spot, M1, and M9 contracts on natural gas and electricity over their 
respective sample periods.

5.3.	 Empirical results

Given the samples of the posterior distributions for the parameter vector 
and the state variables, we can obtain straightforward the Monte Carlo 
estimate of the mean of parameters and latent variables. Our estimates 
take into account parameter 
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Figure 5.2. Estimated jump probabilities
The figure shows the inferred jump times and the jump paths (X3,t

) for the OU-AB-MRJ model.

	
Figure	5.2	Estimated	jump	probabilities	

uncertainty, when we estimate the mean of the posterior state-variable 
distribution, we are considering the fact that parameter estimates are 
random variables. We also compare the more general model with other 
nested specifications with less state variables: the one-factor and two-
factor Gaussian Models (OU model and OU-AB model, respectively); and 
the previous two Gaussian models plus a mean-reverting jump diffusion 
factor (OU-MRJ and OU-AB-MRJ models).

Examining the jump intensity and the jump size parameters (see Figure 
5.2); we observe that jumps are more frequent than in other asset clas-
ses, such as equity. The intensity estimates show that on average we can 
expect around 5 jumps in 100 trading days for NBP natural gas, and 
about 15 jumps for UKPX electricity. The estimates of the mean jump 
size are largely positive and significant. 

According to OU-AB-MRJ estimates, the average jump size is in the 
range [6.4, 14.8] with 95\% probability for natural gas, and in the ran-
ge [11.7, 16.5] for electricity; while the posterior mean of the standard 
deviation of jump sizes is 16.8 and 16.9 for gas and electricity, respecti-
vely. These results indicate that, when jumps occur, positive size jumps 
are more common than negative ones.
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The mean reversion rates of the Gaussian OU variable and the jump 
factor under the physical measure are significant for both commodities 
and for all models. The estimates of speed of mean reversion of the jump 
factor under P for the OU-MRJ and OU-AB-MRJ show that are around 
1.44 and 1.53 for natural gas, and 1.69 and 1.70 for electricity. That 
means the observed half-life of the price deviations corresponding to 
the jump factor is less than 1 day. For both jump models, the estimates 
of the mean-reversion rate of the Gaussian state-variable corresponds 
to an estimated half-life between 75 and 1.0 days, and 57 and 1.2 days, 
for natural gas and electricity, respectively.

Under the Q measure, the estimates of the speed of mean-reversion of 
the Gaussian factor decrease. For instance, for the jump diffusion model 
OU-AB-MRJ, the 95%-probability range of expected half-life for natural 
gas is [124, 433], in days. On the contrary, the estimates of the mean-
reversion rate corresponding to the jump factor are much higher under 
Q than under the physical measure P. For electricity, the observed half-
life values are very close to zero. These results suggest that the presence 
of a jump is largely vanished under the risk-adjusted measure right after 
the jump occurs. Further analysis will be required to understand all the 
implications of these findings.

Finally, we find that the inclusion of mean-reverting jumps reduces on 
average the estimates of the measure error variances. In particular, for 
natural gas, the pricing error variances of the spot prices diminish 54% 
and 51% when using the OU-MRJ and OU-AB-MRJ models instead of 
the OU and OU-AB models. For electricity, this reduction is even greater, 
64% and 54%, respectively.

Conclusions

In this chapter, we propose a new way of thinking about the market 
price of risk so that market participants bearing spot commodity risk are 
compensated for: jump arrival risk; jump size risk; and speed of mean 
reversion risk of both diffusions and/or jumps. When pricing under the 
risk-adjusted measure agents will: over-state the time it takes to return 
to the seasonal trend; alter the mean of the process; and change the 
intensity of the jumps and their average size. Our approach can also 
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16be viewed as a special case of stochastic discount factors that not only 

affect the mean of the process but also its variance via the persistence 
of shocks to the economy.

Using a panel data on natural gas and electricity futures, we empirically 
estimate the model using a MCMC methodology. We are able to analyze 
the behavior of a mean-reverting jump component under both proba-
bility measures. We find evidence of different speeds of mean reversion 
under the physical and the risk-adjusted measures.

Although our specification does not include specifically a dynamic for 
the convenience yield, we can infer from the instantaneous interest rate 
dynamics the stochastic process for the convenience yield or, in terms of 
market price of risk, we can infer an implicit stochastic market price of risk.
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The increasing presence of investors and financial intermediaries 
in commodity markets, together with the huge increase in the 
volatility of commodity prices, have renewed the interest in 
commodities and commodity derivatives. In the last decade, a 
better understanding of the behavior of commodity prices and 
their idiosyncratic statistical features has emerged as a relevant 
financial and policy topic. This book tries to provide new insights, 
first, to analyze the multivariate distribution of commodity returns 
and its impact on portfolio selection and tail risk measures; and, 
second, to price commodity derivatives under the presence of 
non-Gaussian shocks in a continuous time framework. 
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