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FUNDACIÓN DE LA UNIVERSIDAD DE CANTABRIA PARA EL 
ESTUDIO Y LA INVESTIGACIÓN DEL SECTOR FINANCIERO 
(UCEIF) 

La Fundación de la Universidad de Cantabria para el Estudio y la Inves-
tigación del Sector Financiero (UCEIF), promovida por la UC y el Banco 
Santander, nació en el año 2006 con el fin de convertirse en un referente 
nacional e internacional en la generación y transmisión del conocimien-
to, la formación de alto nivel y la I+D en el sector financiero. Actual-
mente viene desarrollando proyectos de gran envergadura, organizando 
su actividad en dos ámbitos de actuación: banca y finanzas, por un lado, 
y actividad empresarial, con especial atención al emprendimiento y a 
las PYMES, por otro. Ambas se articulan por medio de los dos centros 
creados en el seno de la Fundación UCEIF y gestionados por ella, en 
2012: el Santander Financial Institute (SANFI) y el Centro Internacional 
Santander Emprendimiento (CISE). 

La misión del Santander Financial Institute (SANFI) es la generación, di-
fusión y transferencia del conocimiento sobre el sector financiero, para 
lo que cual identifica, desarrolla, apoya y promociona el talento y la in-
novación que ostente un liderazgo sostenible y responsable socialmente, 
con el propósito de contribuir al bienestar, desarrollo y progreso social 
como centro líder por su excelencia e impacto social.

En el ámbito de SANFI la Fundación tiene encomendada la organiza-
ción, coordinación y desarrollo, entre otros, de los siguientes proyectos, 
cuyo detalle puede ser consultado en la web de la Fundación (www.
fundacion-uceif.org):
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•	 Máster en Banca y Mercados Financieros (hoy impartido en 
Santander, México, Marruecos y Brasil), que constituye el eje 
nuclear de una formación altamente especializada organizada 
desde la Fundación con la colaboración de Banco Santander, al 
que se unen otros programas de postgrado externos e “In Com-
pany”.

•	 Archivo Histórico Banco Santander, que comprende la clasifi-
cación, catalogación, administración y custodia del archivo, así 
como la investigación y difusión de sus fondos.

•	 Educación Financiera, dirigido a fomentar la cultura financiera, 
sustentado a través de las plataformas online generadas, como 
Finanzas para Mortales (FxM), utilizando y aplicando las nuevas 
tecnologías y los medios más modernos. 

•	 Atracción de Talento, con diferentes acciones para el desarrollo 
de líneas de investigación estratégicas dedicadas al estudio de 
los “Mercados Globales”, al desarrollo e innovación de “Procesos 
Bancarios”, al conocimiento de la “Historia Bancaria y Financie-
ra” y al desarrollo del “Financial Supercomputing”.

•	 Becas de Investigación, con la finalidad de colaborar en la rea-
lización de Proyectos de Investigación, especialmente de jóve-
nes investigadores, que posibiliten el avance en el conocimiento, 
metodologías y técnicas aplicables en el ejercicio de la actividad 
financiera, en particular las que llevan a cabo las entidades ban-
carias, para mejorar el crecimiento económico, el desarrollo de 
los países y el bienestar de los ciudadanos.

•	 Premios a Tesis Doctorales, con el fin de promover y reconocer 
la generación del conocimiento a través de actuaciones en el 
ámbito del doctorado que desarrollen, impulsen el estudio y la 
investigación en el Sector Financiero. 

•	 Y por último, la línea editorial, en la que se enmarcan estos 
Cuadernos de Investigación, con el objetivo de poner a disposición 
de la sociedad en general, y de la comunidad académica y 
profesional en particular, el conocimiento generado en torno al 
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ámbito de la Fundación, y especialmente los resultados de las 
Becas, Ayudas y Premios a Tesis Doctorales. 

La Fundación también tiene encomendado el desarrollo y gestión del 
CISE como Centro de referencia en el sistema universitario internacional 
en la investigación, transferencia de conocimiento y formación en 
emprendimiento. Impulsa proyectos de investigación sobre el valor de 
la cultura emprendedora y las nuevas metodologías de emprendimiento, 
llevando a cabo el desarrollo de programas docentes y actividades 
formativas de máxima calidad y estimulando la cultura emprendedora 
y la innovación con el fin último de contribuir al progreso económico y 
social. La Fundación, por medio de CISE organiza, coordina y desarrolla, 
entre otros, los siguientes proyectos:

•	 Formación y Difusión del conocimiento y cultura emprendedora, 
con el desarrollo de diversos programas: curso para formadores 
en emprendimiento en alianza con Babson College, Máster en 
Emprendimiento de carácter transversal, estudiante por empren-
dedor (e2), Doc-e, entre otros.

•	 Global Entrepreneurship Monitor (GEM) España, siendo el repre-
sentante institucional del país a nivel mundial en este programa 
de investigación, difusión y compromiso con el Emprendimien-
to, los emprendedores y la creación de empresas, de alcance 
mundial.

•	 “YUZZ Jóvenes con Ideas”, concurso de talento tecnológico para 
jóvenes de 18 a 30 años que se desarrolla, con una periodicidad 
anual y ámbito nacional.

•	 Instituto del Conocimiento – Santander Advance, programa de 
apoyo a las Pymes en diversos aspectos para mejorar su gestión 
y competitividad, gestionando procesos formativos, mediante la 
organización y desarrollo de cursos y otras actividades, así como 
la generación de información sobre el tejido empresarial de la 
PYME por medio de un Observatorio Pymes.
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Las actividades desarrolladas por la Fundación UCEIF, se enmarcan 
dentro del Área de Banca, Finanzas y Actividad Empresarial del 
proyecto Campus de Excelencia Cantabria Campus Internacional, donde 
periódicamente se organizan diversos cursos y encuentros con la UIMP 
y la UC, así como los “Encuentros de Economistas Especialistas en 
Iberoamérica” convocados por la SEGIB anualmente.

Finalmente destacar su participación como patrono en la creación, en 
alianza con las Universidades de Murcia, Politécnica de Cartagena y 
Cantabria, de la Fundación para el Análisis Estratégico y Desarrollo de 
la Pyme, en cuyo seno se crea la Red Internacional de Investigadores en 
Pymes. Fruto de esta actuación se elaboran diversos Informes sobre la 
Pyme en Iberoamérica, tanto a nivel de la región en su conjunto como 
en los distintos países.

Francisco Javier Martínez García

Director de la Fundación UCEIF
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Introduction

The stochastic behaviour of interest rates and commodity prices have 
been thoroughly analysed in the academic literature and constitutes an 
issue of special relevance for practitioners in financial markets. Previous 
studies have proposed numerous processes to model the stochastic com-
ponent of these assets, most of them assuming a mean reverting process.

On the one hand, Table 1 presents some spot rate models proposed in 
the academic literature, classified in two categories: endogenous and 
exogenous. Endogenous models assume that changes in interest rates 
are affected by one or more factors and propose a certain stochastic 
behaviour for the factors. Under those assumptions, the current term 
structure can be derived as an implication from the model. Popular ex-
amples of one-factor models are Vasicek (1977), Brennan and Schwartz 
(1980), or Cox et al. (1985). The downside of these models is the lack of 
an appropriate fit to observed interest rate data. To mitigate this draw-
back some multi-factor models have been proposed. See, for instance, 
Brennan and Schwartz (1979), Schaefer and Schwartz (1984), Longstaff 
and Schwartz (1992), Duffie and Kan (1996), or Chen (1996). In contrast, 
exogenous models consider the current term structure as an input and 
aim to prevent arbitrage opportunities considering interest rates with 
different maturities. A pioneer work in this area was made by Ho and 
Lee (1986) who proposed a model consistent with observed data. As 
this model implies a Gaussian distribution and no mean reversion for 
interest rates, several papers have specified and analysed alternative 
model specifications such as Black et al. (1990), Hull and White (1990, 
1993), Black and Karasinski (1991), Heath et al. (1992), and Mercurio 
and Moraleda (2000). For a complete survey on term structure models 
see, for instance, Webber and James (2001), Brigo and Mercurio (2006), 
or Filipovi´c (2009).

On the other hand, we can also find a significant number of papers 
addressing empirically and theoretically the commodity valuation prob-
lem. For instance, Schwartz (1997) compares three mean- reverting 
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models for the stochastic behaviour of commodity, i) a simple one-fac-
tor model based on the logarithm of the commodity spot price, ii) a 
two-factor model proposed in Gibson and Schwartz (1990), where the 
second factor accounts for the convenience yield of the commodity, and 
iii) an extension of the Gibson and Schwartz (1990) model that incor-
porates the stochastic behaviour of interest rates as in Vasicek (1977). 
Schwartz and Smith (2000) present a representation of the two-factor 
model, where the log-spot price is described as the sum of two state 
variables referred to as the short-term deviation in prices and the equi-
librium price level, respectively. Moreover, Lucia and Schwartz (2002) 
address the possible seasonal behaviour of the commodity price. In this 
paper the authors use the Scandinavian electricity market to compare a 
number of models based on the spot price and the logarithm of the spot 
price, where the seasonal component is arbitrary added in the spot (log-
spot) price and modelled by a deterministic trigonometric function with 
annual frequency. On this regard, Cartea and Figueroa (2005) extend 
the one-factor model allowing the stochastic process to follow a zero 
level mean-reverting jump-diffusion process for the underlying log-spot 
price and the exponential of the trigonometric function is replaced by 
a Fourier series of order five. For a thorough description of some com-
modity models see, for instance, Pilipovi´c (1998).

In this work we extend the existing literature allowing the underlying 
state variable to capture any possible seasonal or cyclical behaviour. 
On this regard, section 2 analyses a continuous-time model for the term 
structure of interest rates where the spot rate is assumed to converge 
to a long- term level that changes over time according to a Fourier se-
ries. Section 3 proposes a square-root model where the instantaneous 
interest rate is pulled back to a certain time-dependent long term level 
characterized by an harmonic oscillator. Section 4 introduces a con-
tinuous-time model based on an Ornstein-Uhlenbeck process for the 
logarithm of the commodity spot price, with a reversion to a time de-
pendent long-run level, the time variation of the long-run price level 
being characterized by a Fourier series. Finally, in section 5 we present 
some concluding remarks.
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A Term Structure Model with Cyclical Mean Reversion

In this section we introduce a continuous-time model for the term 
structure of interest rates assuming that the spot rate converges to a 
long-term level that changes over time according to a Fourier series. 
Under this framework, we present the partial differential equation that 
must be satisfied by the price of any derivative asset, obtain the bond 
pricing equations, and characterize the term structure of interest rates.

First, let rt denote the instantaneous interest rate available at time t. We 
assume that the time evolution of rt is given by the Ornstein-Uhlenbeck 
process, defined by a stochastic differential equation

process to follow a zero level mean-reverting jump-diffusion process for the underlying log-spot price

and the exponential of the trigonometric function is replaced by a Fourier series of order five. For a

thorough description of some commodity models see, for instance, Pilipović (1998).

In this work we extend the existing literature allowing the underlying state variable to capture

any possible seasonal or cyclical behaviour. On this regard, section 2 analyses a continuous-time

model for the term structure of interest rates where the spot rate is assumed to converge to a long-

term level that changes over time according to a Fourier series. Section 3 proposes a square-root
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on an Ornstein-Uhlenbeck process for the logarithm of the commodity spot price, with a reversion
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2 A Term Structure Model with Cyclical Mean Reversion

In this section we introduce a continuous-time model for the term structure of interest rates assuming

that the spot rate converges to a long-term level that changes over time according to a Fourier series.

Under this framework, we present the partial differential equation that must be satisfied by the price

of any derivative asset, obtain the bond pricing equations, and characterize the term structure of

interest rates.

First, let rt denote the instantaneous interest rate available at time t. We assume that the

time evolution of rt is given by the Ornstein-Uhlenbeck process, defined by a stochastic differential

equation

drt = κ(f(t)− rt)dt+ σdWt (1)

where κ, σ ∈ R
+ and Wt is a standard Wiener process. In addition, we assume that the mean-

reversion level, f(t), follows a time-dependent process driven by a Fourier series:

f(t) =

∞∑

n=0

Re
[
Ane

inωt
]

where we only consider the real part of the Fourier series since it is the only one that makes economic

sense. Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail,

An = An,x + iAn,y where An,x, An,y ∈ R. Hence, An,x and An,y denote the amplitude and phase

of the fluctuations in the instantaneous rate, respectively. Moreover, this model nests the model in

Vasicek (1977) by taking An = 0, ∀n ∈ N− {0}.
Now, let Λ(rt, t) denote the market price of risk, which is assumed constant, Λ(rt, t) = λ. Then,
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the risk-neutral version of the process (1) is given by

drt = µrdt+ σdW̃t (2)

where

µr = κ (α+ g(t)− rt) (3)

α = A0 −
λσ

κ
(4)

g(t) =

∞∑

n=1

Re
[
Ane

inωt
]
= f(t)−A0 (5)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure P̃ .

The following Proposition establishes the solution of the stochastic differential equation (2).

Proposition 1 The solution of the risk-neutral process followed by the instantaneous interest rate

is given as1

rs = e−κ(s−t)rt +
(
1− e−κ(s−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωs − e−κ(s−t)+inωt

)]
+ σ

∫ s

t
e−κ(s−u)dW̃u

From Proposition 1, it is clear that instantaneous interest rate follows a Normal distribution. Its

first two statistical moments under P̃ are given as

Ẽ[rT | rt] = e−κ(T−t)rt +
(
1− e−κ(T−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωT − e−κ(T−t)+inωt

)]
(6)

Ṽ [rT | rt] = Ṽ

[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(7)

where we have applied the isometry property for stochastic integrals in the variance.

2.1 Bond Pricing and the Term Structure of Interest Rates

Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at maturity T . Applying

Itô’s Lemma, standard no-arbitrage arguments and some trivial algebra, we get the following partial

differential equation (PDE):

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0

1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.
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where we have applied the isometry property for stochastic integrals in the variance.
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Itô’s Lemma, standard no-arbitrage arguments and some trivial algebra, we get the following partial

differential equation (PDE):
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1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.
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Ṽ [rT | rt] = Ṽ
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1.  This result arises as e−k(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.
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Itô’s Lemma, standard no-arbitrage arguments and some trivial algebra, we get the following partial

differential equation (PDE):

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0

1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.

5

the risk-neutral version of the process (1) is given by

drt = µrdt+ σdW̃t (2)

where

µr = κ (α+ g(t)− rt) (3)

α = A0 −
λσ

κ
(4)

g(t) =

∞∑

n=1

Re
[
Ane

inωt
]
= f(t)−A0 (5)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure P̃ .

The following Proposition establishes the solution of the stochastic differential equation (2).

Proposition 1 The solution of the risk-neutral process followed by the instantaneous interest rate

is given as1

rs = e−κ(s−t)rt +
(
1− e−κ(s−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωs − e−κ(s−t)+inωt

)]
+ σ

∫ s

t
e−κ(s−u)dW̃u

From Proposition 1, it is clear that instantaneous interest rate follows a Normal distribution. Its

first two statistical moments under P̃ are given as
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[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(7)

where we have applied the isometry property for stochastic integrals in the variance.
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1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.
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Ṽ

[∫ T

t
rsds | rt

]
=

σ2

κ2

[
(T − t)− 2

1− e−κ(T−t)

κ
+

1− e−2κ(T−t)

2κ

]
(11)

Since all affine models provide an exponential-affine functional form for bond pricing, we can

immediately rewrite the previous Proposition to obtain the next one.

Proposition 3 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, t, T ) = eA(t,T )−B(t,T )rt

where

A(t, T ) =
σ2

2κ2

[
(T − t)− 2B(t, T ) +

1− e−2κ(T−t)

2κ

]
+ (B(t, T )− (T − t))α

−
∞∑

n=1

Re

[
An

nω(κ+ inω)

(
einωt

(
nωe−κ(T−t) + iκ− nω

)
− iκeinωT

)]
(12)

B(t, T ) =
1− e−κ(T−t)

κ
(13)

6

.

Using probabilistic techniques, the solution of this PDE can be written 
as a risk-neutral conditional expectation, that is,

that must be verified by the price of any derivative.

Replacing expression (1) and the constant market price of risk λ into (8), we get the PDE for

the bond price:

Pt + Prκ (α+ g(t) − rt) + Prr
σ2

2
− Prt = 0

subject to the terminal condition P (rT , T, T ) = 1, ∀ rT .

Using probabilistic techniques, the solution of this PDE can be written as a risk-neutral condi-

tional expectation, that is,

P (rt, t, T ) = Ẽ
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−Ẽ

[∫ T

t
rsds | rt

]
+

1

2
Ṽ
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Ẽ

[∫ T

t
rsds | rt

]
=

1− e−κ(T−t)

κ
rt −

(
1− e−κ(T−t)

κ
− (T − t)

)
α

+

∞∑

n=1

Re

[
An

nω(κ+ inω)

(
einωt

(
nωe−κ(T−t) + iκ− nω

)
− iκeinωT

)]
(10)

Ṽ
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[
e−

∫ T
t

rsds | rt
]

Looking at Proposition 1, it is clear that
∫ T
t rsds is a random Normal variable. Then, straightforward

algebra leads to the solution of this PDE as given in the following Proposition.

Proposition 2 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, t, T ) = exp

{
−Ẽ
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[
e−

∫ T
t

rsds | rt
]

Looking at Proposition 1, it is clear that
∫ T
t rsds is a random Normal variable. Then, straightforward

algebra leads to the solution of this PDE as given in the following Proposition.

Proposition 2 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, t, T ) = exp

{
−Ẽ
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In Figure 1 we plot the term structure of bond prices for three different 
set of parameters in the Fourier model against the structure obtained 
with Vasicek’s model. We can see the higher flexibility of our proposed 
model approach to fit different shapes of the term structure.

Under this framework and considering the bond price P (rt, t, T) given by 
Proposition 3, the term structure of interest rates is fully characterized 
in the following Corollary.

Corollary 1. The yield to maturity, R(rt, t, T ), is given by
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Under this framework and considering the bond price P (rt, t, T ) given by Proposition 3, the term

structure of interest rates is fully characterized in the following Corollary.

Corollary 1 The yield to maturity, R(rt, t, T ), is given by

R(rt, t, T ) = −1

τ
lnP (rt, t, T ), τ = T − t

The short-term interest rate is defined as the instantaneous interest rate at time t, that is,

rt = lim
τ→0

R(rt, t, T ) = R(rt, t, t)

The instantaneous forward rate is given as

f(rt, t, T ) = −∂ ln(P (rt, t, T ))

∂T

Figure 2 shows the yield curve for three different set of parameters in the Fourier model against

Vasicek’s model. Clearly, even for small number of terms (n) in the expansion, the Fourier model

is capable of replicating different yield curve shapes such as upward sloping, downward sloping,

humped, and inverted humped. On this respect, it is interesting to stress that our model should be

able to replicate any yield curve shape as n goes to infinity, since the yield curve function belongs

to a Hilbert space L2([t, T ]), and the Fourier series can be made to converge in quadratic mean to

any function in such a space.

For illustrative purposes, Figures 3 and 4 show how the term structure of interest rates responds

to different values of speed of reversion to the mean and the volatility parameter, respectively. Both

models provide a similar pattern for the chosen parameters: the lower the speed of mean reversion,

the lower the yield. Additionally, in the Fourier model, the lower the speed of mean reversion, the

flatter the term structure. Moreover, Figure 4 shows that the yield decreases with volatility. Figure

5 compare how the term structure of interest rates responds in the Vasicek model and the Fourier

model to different values of the common α parameter. Finally, Figure 6 displays how the term

structure under the Fourier model responds to changes in its parameters An,x, An,y and ω. The

most obvious effect is that of changes in the phase An,y. We can see how the position and height of

the peak in the term structure occur in opposite places for different phases. All these representations

confirm that our proposed model provides a great flexibility even for small number of terms in the

Fourier expansion.
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of terms (n) in the expansion, the Fourier model is capable of replicating 
different yield curve shapes such as upward sloping, downward sloping, 
humped, and inverted humped. On this respect, it is interesting to stress 
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goes to infinity, since the yield curve function belongs to a Hilbert space 
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For illustrative purposes, Figures 3 and 4 show how the term structure 
of interest rates responds to different values of speed of reversion to the 
mean and the volatility parameter, respectively. Both models provide 
a similar pattern for the chosen parameters: the lower the speed of 
mean reversion, the lower the yield. Additionally, in the Fourier model, 
the lower the speed of mean reversion, the flatter the term structure. 
Moreover, Figure 4 shows that the yield decreases with volatility. Figure 5 
compare how the term structure of interest rates responds in the Vasicek 
model and the Fourier model to different values of the common α 
parameter. Finally, Figure 6 displays how the term structure under the 
Fourier model responds to changes in its parameters An,x, An,y and ω. 
The most obvious effect is that of changes in the phase An,y. We can see 
how the position and height of the peak in the term structure occur in 
opposite places for different phases. All these representations confirm 
that our proposed model provides a great flexibility even for small 
number of terms in the Fourier expansion.
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Derivatives Pricing under a New Macro-financial 
Square-root Process for the Term Structure of 
Interest Rates

Unlike any other one-factor model that allow the spot rate process for 
time-dependent parameters (see, for instance, Hull and White (1990, 
1993)), we now assume that the mean reversion level follows a cyclical 
process. In addition, we also consider that the interest rate volatility 
depends on the interest rate level. Thus, we model the behaviour of both 
variables assuming an harmonic oscillator as follows

3 Derivatives Pricing under a New Macro-financial Square-root

Process for the Term Structure of Interest Rates

Unlike any other one-factor model that allow the spot rate process for time-dependent parameters

(see, for instance, Hull and White (1990, 1993)), we now assume that the mean reversion level

follows a cyclical process. In addition, we also consider that the interest rate volatility depends

on the interest rate level. Thus, we model the behaviour of both variables assuming an harmonic

oscillator as follows

f(t) = A sin(ϕ− ωt)

where A denotes the amplitude of the wave, ϕ the offset phase, and w the temporal frequency.

We now define the mean reversion level, θt, and the volatility, σ2
t , as

θt = Aθ sin (2 ϕ− ωt)

σ2
t = Aσ sin (2 ϕ− ωt)

Hence, the positiveness of the mean reversion level and the interest rate volatility is guaranteed.

Let rt denote the instantaneous interest rate available at time t whose dynamic is

drt = µrdt+ σrdWt

where Wt is a standard Wiener process and

µr = κ(θt − rt)

σr = σt
√
rt

where κ ∈ R
+. Looking at these expressions, it is clear that our model nests that presented in Cox

et al. (1985) taking ω = 0 in equations (14)-(15).

For square-root processes of this type, Cox et al. (1985) shows that the distribution function of

interest rates is a rescaled non-central chi-square with δ degrees of freedom. Note that, whenever

δ is not a positive integer, the distribution of rt is unknown. Besides, the dimension of the process

rt is given by δ = 4θtκ
σ2
t
. As both waves are in phase, the model’s dimension can be represented as

δ = 4Aθκ
Aσ

> 0. 2 Our model guarantees the positiveness of interest rates. On this respect, Feller

(1951) studied the Fokker-Plank-Kolmogorov equation for the transition density and showed that

rt > 0 if δ ≥ 2, however it can become null if δ < 2 but will never become negative.

2Note that, if sin(ϕ − ωt) is equal to zero, then δ becomes indeterminate. As this case would only occur for a

infinitesimal period of time, we do not consider this possibility.
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We now define the mean reversion level, θt, and the volatility, σ2
t , as

θt = Aθ sin (2 ϕ− ωt)

σ2
t = Aσ sin (2 ϕ− ωt)

Hence, the positiveness of the mean reversion level and the interest rate volatility is guaranteed.

Let rt denote the instantaneous interest rate available at time t whose dynamic is

drt = µrdt+ σrdWt

where Wt is a standard Wiener process and

µr = κ(θt − rt)

σr = σt
√
rt

where κ ∈ R
+. Looking at these expressions, it is clear that our model nests that presented in Cox

et al. (1985) taking ω = 0 in equations (14)-(15).

For square-root processes of this type, Cox et al. (1985) shows that the distribution function of

interest rates is a rescaled non-central chi-square with δ degrees of freedom. Note that, whenever

δ is not a positive integer, the distribution of rt is unknown. Besides, the dimension of the process

rt is given by δ = 4θtκ
σ2
t
. As both waves are in phase, the model’s dimension can be represented as

δ = 4Aθκ
Aσ

> 0. 2 Our model guarantees the positiveness of interest rates. On this respect, Feller

(1951) studied the Fokker-Plank-Kolmogorov equation for the transition density and showed that

rt > 0 if δ ≥ 2, however it can become null if δ < 2 but will never become negative.

2Note that, if sin(ϕ − ωt) is equal to zero, then δ becomes indeterminate. As this case would only occur for a

infinitesimal period of time, we do not consider this possibility.
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Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at maturity T .

Then, the bond price dynamics is given by the process

dP = µP (rt, t, T )P (rt, t, T )dt+ σP (rt, t, T )P (rt, t, T )dWt (19)

Applying Itô’s Lemma and using (16), it can be shown that

µP =
1

P

(
Pt + µrPr +

1

2
σ2
rPrr

)
(20)

σP = σr
Pr

P
(21)

where arguments have been omitted and subscripts in P indicate the corresponding partial derivative.

Applying standard no-arbitrage arguments, there exists a factor Λ(rt, t), called market price of risk,

such that

µP (rt, t, T )− rt = Λ(rt, t)σP (rt, t, T ) (22)

Finally, some trivial algebra leads to the following partial differential equation (PDE)

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0 (23)

that must be verified by the price of any derivative.

Considering a market price of risk such as

Λ(rt, t) =
λt
√
rt

σt
(24)

Using expressions (18)-(24), the PDE (23) becomes

Pt(rt, t, T ) + (κ(θt − rt)− λtrt)Pr(rt, t, T ) +
1

2
σ2
t rtPrr(rt, t, T )− rtP (rt, t, T ) = 0 (25)

The solution of this PDE, subject to the boundary condition P (rT , T, T ) = 1, ∀rT , is given by

the following Proposition.

Proposition 4 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, τ) = A(τ)e−B(τ)rt
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2.  Note that, if sin (ϕ − ωt) is equal to zero, then δ becomes indeterminate. As this case would only occur 
for a infinitesimal period of time, we do not consider this possibility.
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where

A(τ) = exp

{
−
∫ T

t
κθtB(τ)dt

}

B(τ) =
c1MC(a, q, x) +MS(a, q, x)

1
2(λ+ κ) (c1MC(a, q, x) +MS(a, q, x)) + ω (c1MCP (a, q, x) +MSP (a, q, x))

a = −Aσ + (λ+ κ)2

4ω2

q = − Aσ

8ω2

x = ϕ− ωt

c1 = −MS(a, q, ϕ − ωT )

MC(a, q, ϕ− ωT )

τ = T − t

where θt is given by (14), MC and MS represent the Mathieu cosine and sine function, respectively,

and MCP and MSP represent the derivative with respect to x of the Mathieu cosine and sine function,

respectively.

Figure 7 compares the bond price in the CIR model against three alternatives in our model.

We check that, in our model, the bond price does not decrease monotonically with time to matu-

rity. Additionally, we provide much more flexibility than the CIR model with the same analytical

tractability. We can also visualize the presence of humps, which is a very desirable effect not only

here but also in any interest rate derivative.

Corollary 2 The yield to maturity, R(rt, t, T ), is given by

R(rt, t, T ) = −1

τ
lnP (rt, t, T ), τ = T − t

The short-term interest rate is defined as the instantaneous interest rate at time t, that is,

rt = lim
τ→0

R(rt, t, T ) = R(rt, t, t)

The instantaneous forward rate is given as

f(rt, t, T ) = −∂ ln(P (rt, t, T ))

∂T

Figure 8 shows the term structure of interest rates in the CIR model and three alternatives in

our model. We can see how our model adds flexibility as we can reflect different behaviours for the

term structure.
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Figure 8 shows the term structure of interest rates in the CIR model and 
three alternatives in our model. We can see how our model adds flexibil-
ity as we can reflect different behaviours for the term structure.

For illustrative purposes, Figures 9 and 10 show how the term struc-
ture of interest rates responds to changes in the mean reversion speed 
and volatility in both models. In the CIR model, the higher the speed 
of mean reversion, the higher the interest rate while, in our model, the 
lower the mean reversion speed, the flatter the term structure. Besides, 
in our model, there is a twist in the pattern due to the cyclic behaviour. 
In Figure 10, for both models, the higher the volatility, the lower the 
term structure.

Figures 11 and 12 reflect the response of the term structure of interest 
rates to different values of the mean reversion level in both models. 
In the CIR model, the higher the mean reversion level, the higher the 
yield. In our model, it is harder to analyse this response as it depends on 
three parameters. Anyway, we observe that the lower the amplitude, the 
flatter and the lower the term structure. When changing the temporal 
frequency, it seems clear that the higher the temporal frequency, the 
more humped the term structure. Finally, for different offset phases, the 
curves occasionally crossover each other.
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Valuation of commodity derivatives when spot 
prices revert to a cyclical mean

In this section we analyse the commodity market. In more detail, giv-
en the seasonal behaviour exhibited by most commodities, this section 
introduces a continuous-time model based on an Ornstein-Uhlenbeck 
process for the logarithm of the commodity spot price, with a reversion 
to a time dependent long-run level, the time variation of the long-run 
price level being characterized by a Fourier series.

Let St denote the commodity spot price available at time t. Then, the 
evolution of the commodity spot price, St, is given by the stochastic 
differential equation

For illustrative purposes, Figures 9 and 10 show how the term structure of interest rates responds

to changes in the mean reversion speed and volatility in both models. In the CIR model, the higher

the speed of mean reversion, the higher the interest rate while, in our model, the lower the mean

reversion speed, the flatter the term structure. Besides, in our model, there is a twist in the pattern

due to the cyclic behaviour. In Figure 10, for both models, the higher the volatility, the lower the

term structure.

Figures 11 and 12 reflect the response of the term structure of interest rates to different values of

the mean reversion level in both models. In the CIR model, the higher the mean reversion level, the

higher the yield. In our model, it is harder to analyse this response as it depends on three parameters.

Anyway, we observe that the lower the amplitude, the flatter and the lower the term structure. When

changing the temporal frequency, it seems clear that the higher the temporal frequency, the more

humped the term structure. Finally, for different offset phases, the curves occasionally crossover

each other.

4 Valuation of commodity derivatives when spot prices revert to

a cyclical mean

In this section we analyse the commodity market. In more detail, given the seasonal behaviour ex-

hibited by most commodities, this section introduces a continuous-time model based on an Ornstein-

Uhlenbeck process for the logarithm of the commodity spot price, with a reversion to a time depen-

dent long-run level, the time variation of the long-run price level being characterized by a Fourier

series.

Let St denote the commodity spot price available at time t. Then, the evolution of the commodity

spot price, St, is given by the stochastic differential equation

dSt = κ (f(t)− ln(St))Stdt+ σStdWt (26)

where κ, σ ∈ R
+ and Wt is a standard Wiener process. The main assumption made in this model

is that the mean reversion level, f(t), follows a time-dependent periodic function characterized by a

Fourier series, in more detail

f(t) =

∞∑

n=0

Re
[
Ane

inwt
]

where it is only considered the real part of the series since it is the part that makes economic

sense. Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail,

consider An = Ax,n + iAy,n where Ax,n, Ay,n ∈ R. Hence, Ax,n and Ay,n denote the amplitude

and phase of each term in the Fourier expansion, respectively. Note that this model nests model 1

presented in Schwartz (1997) by taking An = 0, ∀n ∈ N− {0}.

11
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where it is only considered the real part of the series since it is the part 
that makes economic sense. Note that, ∀n | An ∈ C, so that there is a phase 
factor contained in An. In more detail, consider An = Ax,n + iAy,n where Ax,n, 
Ay,n ∈ R. Hence, Ax,n and Ay,n denote the amplitude and phase of each term 
in the Fourier expansion, respectively. Note that this model nests model 1 
presented in Schwartz (1997) by taking An = 0, ∀n ∈ N − {0}.

Moreover, defining Xt = ln(St), assuming a constant market price of risk, 
that is Λ(St, t) = λ, and applying Ito’s Lemma, the log price can be rep-
resented by the following risk-neutral process
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
σ2

2κ
− λσ

κ
(29)

g(t) =

∞∑

n=1

Re
[
Ane

inwt
]

(30)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
+σ

∫ s

t
e−κ(s−u)dW̃u

Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(31)

Ṽ [XT |Ft] = Ṽ

[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(32)

12

	 (27)

where

Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
σ2

2κ
− λσ

κ
(29)

g(t) =

∞∑

n=1

Re
[
Ane

inwt
]

(30)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
+σ

∫ s

t
e−κ(s−u)dW̃u

Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Ṽ [XT |Ft] = Ṽ
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where A0 ∈ R and W
~

t = Wt + λt is a standard Wiener process under the 
risk-neutral measure P

~
.

The following Proposition establishes the solution of the stochastic dif-
ferential equation (27).

Proposition 5. The solution of the risk-neutral process followed by the 
logarithm of the commodity spot price is given as

Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
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)
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+
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n=1
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(
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
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)
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Figure 13 presents the evolution of the spot price time series for four 
different set of parameters. In the first graph we only consider the drift 
process, that is σ = 0. We can see how flexible this model is, in fact, any 
scenario can be replicated increasing the number of terms in the Fourier 
expansion. The second graph considers the drift and diffusion process, 
this representation presents a simulated spot price walk considering 
each underlying scenario. For illustrative purposes, Figures 14 and 15 
show how the spot price responds to different values of α~, κ, An,x, An,y, 
and ω with n = 1, σ = 0.
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From Proposition 5, it is clear that the conditional distribution of the 
logarithm of the commodity spot price at time T follows a normal distri-
bution where the mean and variance under the risk-neutral probability 
measure P

~ are given as

Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+
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n=1
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(
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∫ s
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e−κ(s−u)dW̃u

Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Ṽ [XT |Ft] = Ṽ
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
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2κ
− λσ
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1
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[
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(
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)]
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∫ s
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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(
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1
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[
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(
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)]
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∫ s
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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where we have applied the isometry property for stochastic integrals in 
the variance.

Since Xt = ln(St), the forward price of a commodity maturing at time T is 
a straightforward application of the properties of the log-normal distri-
bution under the risk-neutral measure. Hence, the following proposition 
arises.

Proposition 6. Assuming a constant interest rate, the forward price of a 
commodity maturing at time T is given by

where we have applied the isometry property for stochastic integrals in the variance.

Since Xt = ln(St), the forward price of a commodity maturing at time T is a straightforward

application of the properties of the log-normal distribution under the risk-neutral measure. Hence,

the following proposition arises

Proposition 6 Assuming a constant interest rate, the forward price of a commodity maturing at

time T is given by

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}
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Alternatively,
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(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)

+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(33)

4.1 Option Pricing

This section focuses on option pricing. In more detail, we compute closed-form expressions for the

prices of European options written on the commodity and the forward commodity price under the

new model framework.

• European option on the commodity

Consider a call option maturing at time T with strike K, written on a commodity. Let

ct(St; t;T ;K) denote the price at time t of this call option. Then, the terminal condition

to this call option is given by

cT (ST ;T ;T ;K) = max{F (ST ;T ;T )−K; 0}

Hence, under the risk-neutral measure P̃ , the price at time t of this option will be given by

ct(St; t;T ;K) = Ẽ
[
e−r(T−t)(F (St; t;T )−K)+|Ft

]

The call option price is given by the following Proposition.

13
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where we have applied the isometry property for stochastic integrals in the variance.

Since Xt = ln(St), the forward price of a commodity maturing at time T is a straightforward

application of the properties of the log-normal distribution under the risk-neutral measure. Hence,

the following proposition arises

Proposition 6 Assuming a constant interest rate, the forward price of a commodity maturing at

time T is given by

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
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Alternatively,
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4.1 Option Pricing

This section focuses on option pricing. In more detail, we compute closed-form expressions for the
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with Ẽ[XT |Ft] and Ṽ [XT |Ft] given by equation (31) and (32), respectively.

• European option on the commodity forward

Consider a European forward call option that matures at time T with strike K. If this option

is exercised, the call-holder pays K and receives a forward maturing at time s on a commodity.

Let ct(St; t;T ; s;K) denote the price at time t of this option. The terminal condition of this

option is given as

cT (ST ;T ; s;K) = max{F (ST ;T ; s)−K, 0}

Under the risk-neutral measure P̃ , the price at time t of this option is given as

ct(St; t;T ; s;K) = Ẽ
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[
e−r(T−t)(F (ST , T, s)−K)+|Ft

]

= e−r(T−t)

∫ ∞

−∞
(F (ST , T, s)−K)+ρ(µ,Σ)dXT

= e−r(T−t)

[
exp

{
Ω+ µe−κ(s−T ) +

1

2
Σ2e−2κ(s−T )

}
Φ(d1)−KΦ(d2)

]

14



Federico Daniel Platania
Cu

ad
er

no
s 

de
 In

ve
st

ig
ac

ió
n 

UCEIF



 16

/2
0

15

30

where ρ(µ, Σ) defines the normal density function and

Proposition 7 The price at time t of a European call option with maturity T written on a

commodity is given by

ct(St, t, T,K) = Ẽ
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5 Conclusions

Characterizing the stochastic behaviour of interest rates and commodity prices constitute an issue

of special relevance for practitioners in financial markets and it has been deeply analysed in many

academic papers throughout the years. In this work we have introduced three different continuous-

time models allowing the underlying state variable to capture any possible seasonal or cyclical

behaviour.

Firstly, in section 2, we have presented a model for the term structure of interest rates assuming

that instantaneous spot rate converges to a certain time-dependent long term level that varies over

time according to a Fourier series. In section 3 we dig deeper into the term structure of interest rates

assuming that the spot rate follows a square-root process where both the mean reversion level and the

volatility parameter change over time as a sinusoidal function. Finally, given the seasonal behaviour

exhibited by most commodities, section 4 analyses the commodity market. In a similar fashion as in

section 2, we assume that the logarithm of the commodity spot price follows an Ornstein-Uhlenbeck

process with a reversion to a time dependent long-run level characterized by a Fourier series.

The results obtained have strong practical applications, each model fulfils a real necessity pro-

viding a powerful and simple tool for pricing and risk management purposes and should be of special

interest for traders, financial institutions, and risk managers.
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time models allowing the underlying state variable to capture any possible seasonal or cyclical

behaviour.

Firstly, in section 2, we have presented a model for the term structure of interest rates assuming

that instantaneous spot rate converges to a certain time-dependent long term level that varies over

time according to a Fourier series. In section 3 we dig deeper into the term structure of interest rates

assuming that the spot rate follows a square-root process where both the mean reversion level and the

volatility parameter change over time as a sinusoidal function. Finally, given the seasonal behaviour

exhibited by most commodities, section 4 analyses the commodity market. In a similar fashion as in

section 2, we assume that the logarithm of the commodity spot price follows an Ornstein-Uhlenbeck

process with a reversion to a time dependent long-run level characterized by a Fourier series.

The results obtained have strong practical applications, each model fulfils a real necessity pro-

viding a powerful and simple tool for pricing and risk management purposes and should be of special

interest for traders, financial institutions, and risk managers.

15

with Ẽ [XT|Ft ] and Ṽ [XT|Ft ] given by equation (31) and (32), respectively.
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Conclusions

Characterizing the stochastic behaviour of interest rates and commodity 
prices constitute an issue of special relevance for practitioners in finan-
cial markets and it has been deeply analysed in many academic papers 
throughout the years. In this work we have introduced three different 
continuous- time models allowing the underlying state variable to cap-
ture any possible seasonal or cyclical behaviour.

Firstly, in section 2, we have presented a model for the term structure 
of interest rates assuming that instantaneous spot rate converges to a 
certain time-dependent long term level that varies over time according 
to a Fourier series. In section 3 we dig deeper into the term structure of 
interest rates assuming that the spot rate follows a square-root process 
where both the mean reversion level and the volatility parameter change 
over time as a sinusoidal function. Finally, given the seasonal behaviour 
exhibited by most commodities, section 4 analyses the commodity mar-
ket. In a similar fashion as in section 2, we assume that the logarithm of 
the commodity spot price follows an Ornstein-Uhlenbeck process with a 
reversion to a time dependent long-run level characterized by a Fourier 
series.

The results obtained have strong practical applications, each model ful-
fils a real necessity providing a powerful and simple tool for pricing and 
risk management purposes and should be of special interest for traders, 
financial institutions, and risk managers.
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Appendix of Tables

Table 1: Term Structure Models

Author(s) Model Specification

Merton (1973) dr = θdt + σdw θ, σ are constant

Vasicek (1977) dr = κ(θ − r)dt + σdw κ, θ, σ are constant

Cox et al. (1985) dr = κ(θ − r)dt + σ√rdw κ, θ, σ are constant
Chan et al. (1992) dr = κ(θ − r)dt + σrγdw κ, θ, σ, γ are constant

Ho and Lee (1986) dr = θt dt + σdw θt is time-varying and 
σ is constant

Black et al. (1990) d In(r) = [θt – σ't     ]dt + σtdwσt
θt, σt are time-varying

Hull and White (1990, 
1993)

dr = κ(θt − r)dt + σtrγdw θt, σt are time-varying, 
γ = 0, 1/2

Black and Karasinski 
(1991)

dln(r) = φt [ln(µt) − ln(r)]dt + σtdw φt, µt are time-varying

Heath et al. (1992) df = αtdt + σtdw f is the forward rate

Mercurio and Moraleda 
(2000)

dr = r [ηt − (λ −   
γ
  ) In(r)]dt + σrdw1+γt

ηt is time-varying and 
λ, γ, σ are constant

Brennan and Schwartz 
(1979)

dr = θr dt + σr1 dw1 + σr2 dw2 
dl = θl dt + σl1 dw1 + σl2 dw2 

θi, σij, i = r, l, j = 1,2 
are constant

Schaefer and Schwartz 
(1984)

ds = m(µ − s)dt + ηdw1

dl = (σ2 − ls)dt + σ√ldw2

m, µ, η, σ are constant

Longstaff and Schwartz 
(1992)

dx = (γ − δx)dt + √xdw1

dy = (η − vy)dt + √xdw2

γ, δ, η, v are constant

Duffie and Kan (1996) dX1 = (b1 +Ʃ2
i =1

 a1iXi)dt + σ11√α1 + Ʃ2
i =1

 β1iXi dw1

dX2 = (b2 +Ʃ2
i =1

 a2iXi)dt + σ22√α2 + Ʃ2
i =1

 β2iXi dw2

Xi, i = 1, 2 are the 
yields of two zero-
coupon bonds 

Chen (1996) dr = κ(θ − r)dt + √σ√rdw1

dθ = ν(θ̂ − θ)dt + ς√θdw2

dσ = µ(σ̂ − σ)dt + η√σdw3

κ, ν, θ̂ , ς, µ, σ̂, η are 
constant
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Appendix of Figures

Figure 1: Simulation of the Zero-coupon bond price term structure for an arbi-
trary set of parameters

7 Appendix of Figures
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Figure 1: Simulation of the Zero-coupon bond price term structure for an arbitrary set of parameters.

Parameter Values Vasicek Model:

Blue line: r0 = 0.02, α = 0.05, σ = 0.002, κ = 0.2.

Parameter Values Fourier Model :

Red line: r0 = 0.02, α = 0.05, σ = 0.0011, κ = 0.3397, ω = 20, n = 5, A1,x = 0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x =

0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655.

Green line: r0 = 0.02, α = 0.07, σ = 0.0005, κ = 0.018, ω = 0.48, n = 2, A1,x = −1.8, A1,y = 1, A2,x = 1.5, A2,y = −1.5.

Violet line: r0 = 0.02, α = 0.08, σ = 0.0002, κ = 0.02, ω = 0.25, n = 1, A1,x = 0.3, A1,y = 0.03

17

Parameter Values Vasicek Model:

Blue line: r0 = 0,02; α = 0,05; σ = 0,002; κ = 0,2. 

Parameter Values Fourier Model:

Red line: r0 = 0,02; α = 0,05; σ = 0,0011; κ = 0,3397; ω = 20; n = 5; A1,x = 0,1758; A1,y = 0,0402; 
A2,x = −0,3011; A2,y = 0,0172; A3,x = 0,0498; A3, y = −0,1215; A4,x = 0,0798; A4,y = 0,1618; 
A5,x = 0,0894; A5,y = 0,0655.

Green line: r0 = 0,02; α = 0,07; σ = 0,0005; κ = 0,018; ω = 0,48; n = 2; A1,x = −1,8; A1,y = 1; 
A2,x = 1,5; A2,y = −1,5.

Violet line: r0 = 0,02; α = 0,08; σ = 0,0002; κ = 0,02; ω = 0,25; n = 1; A1,x = 0,3; A1,y = 0,03.
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Figure 2: Term Structure of Interest Rates for an arbitrary set of parameters.

Parameter Values Vasicek Model:

Blue line: r0 = 0.02, α = 0.05, σ = 0.002, κ = 0.2.

Parameter Values Fourier Model:

Red line: r0 = 0.02, α = 0.05, σ = 0.0011, κ = 0.3397, ω = 20, n = 5, A1,x = 0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x =

0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655.

Green line: r0 = 0.02, α = 0.07, σ = 0.0005, κ = 0.018, ω = 0.48, n = 2, A1,x = −1.8, A1,y = 1, A2,x = 1.5, A2,y = −1.5.

Violet line: r0 = 0.02, α = 0.08, σ = 0.0002, κ = 0.02, ω = 0.25, n = 1, A1,x = 0.3, A1,y = 0.03

18

Parameter Values Vasicek Model:

Blue line: r0 = 0,02; α = 0,05; σ = 0,002; κ = 0,2. 

Parameter Values Fourier Model:

Red line: r0 = 0,02; α = 0,05; σ = 0,0011; κ = 0,3397; ω = 20; n = 5; A1,x = 0,1758; A1,y = 0,0402; 
A2,x = −0,3011; A2,y = 0,0172; A3,x = 0,0498; A3, y = −0,1215; A4,x = 0,0798; A4,y = 0,1618; 
A5,x = 0,0894; A5,y = 0,0655.

Green line: r0 = 0,02; α = 0,07; σ = 0,0005; κ = 0,018; ω = 0,48; n = 2; A1,x = −1,8; A1,y = 1; 
A2,x = 1,5; A2,y = −1,5.

Violet line: r0 = 0,02; α = 0,08; σ = 0,0002; κ = 0,02; ω = 0,25; n = 1; A1,x = 0,3; A1,y = 0,03.
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Figure 3: Term structure of interest rates for different values of the speed of 
mean reversion κ
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Figure 3: Term structure of interest rates for different values of the speed of mean reversion κ. In both models, the values of κ corresponding

to the curves from the top down are 0.6, 0.2, 0.1, 0.05, and 0.01, respectively.

Parameter Values Vasicek Model : r0 = 0.02, α = 0.05, σ = 0.0002.

Parameter Values Fourier Model : r0 = 0.02, α = 0.05, σ = 0.0002, ω = 0.20, n = 1, A1,x = 0.05, A1,y = −0.03.

19

In both models, the values of κ corresponding to the curves from the top down are 0,6; 0,2; 0,1; 
0,05 and 0,01 respectively

Parameter Values Vasicek Model : r0 = 0,02; α = 0,05; σ = 0,0002.

Parameter Values Fourier Model : r0 = 0,02; α = 0,05; σ = 0,0002; ω = 0,20; n = 1; A1,x = 0,05; 
A1,y = −0,03.
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Figure 4: Term structure of interest rates for different values of σ. In both models, the values of σ corresponding to the curves from the top

down are 0.0002, 0.002, 0.005, 0.007, and 0.009, respectively.

Parameter Values Vasicek Model : r0 = 0.02, α = 0.05, κ = 0.02.

Parameter Values Fourier Model : r0 = 0.02, α = 0.05, κ = 0.02, ω = 0.20, n = 1, A1,x = 0.05, A1,y = −0.03.

20

In both models, the values of σ corresponding to the curves from the top down are 0,0002; 
0,002; 0,005; 0,007 and 0,009 respectively

Parameter Values Vasicek Model: r0 = 0,02; α = 0,05; κ = 0,02.

Parameter Values Fourier Model: r0 = 0,02; α = 0,05; κ = 0,02; ω = 0,20; n = 1; A1,x = 0,05;  
A1,y = −0,03.
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Figure 5: Term structure of interest rates for different values of the mean 
reversion level α
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Figure 5: Term structure of interest rates for different values of the mean reversion level α. In both models, the values of α corresponding to

the curves from the top down are 0.05, 0.04, 0.03, 0.02, and 0.01, respectively.

Parameter Values Vasicek Model : r0 = 0.02, σ = 0.0002, κ = 0.02.

Parameter Values Fourier Model : r0 = 0.02, σ = 0.0002, κ = 0.02, ω = 0.20, n = 1, A1,x = 0.05, A1,y = −0.03.

21

In both models, the values of α corresponding to the curves from the top down are 0,05; 0,04; 
0,03; 0,02 and 0,01 respectively.

Parameter Values Vasicek Model : r0 = 0,02; σ = 0,0002; κ = 0,02.

Parameter Values Fourier Model : r0 = 0,02; σ = 0,0002; κ = 0,02; ω = 0,20; n = 1; A1,x = 0,05; 
A1,y = −0,03.
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parameters
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Figure 6: Term structure of interest rates for different values of the Fourier parameters.

First Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.2, ω = 0.20, n = 1, A1,y = −0.03. and A1,x = −0.05;−0.005; 0; 0.005; 0.05.

Second Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.02, ω = 0.30, n = 1, A1,x = 0.05. and A1,y = −0.2;−0.02; 0; 0.02; 0.2.

Third Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.1, n = 1, A1,x = 0.05, A1,y = −0.03 and ω = 0.2; 0.25; 0.4; 0.5; 1.

22

First Graph: r0 = 0,02; α = 0,05; σ = 0,0002; κ = 0,2; ω = 0,20; n = 1; A1,y = −0,03; and A1,x = 
−0,05; −0,005; 0; 0,005; 0,05. 

Second Graph: r0 = 0,02, α = 0,05, σ = 0,0002, κ = 0,02, ω = 0,30, n = 1, A1,x = 0,05. and A1,y = 
−0,2; −0,02; 0; 0,02; 0,2. 

Third Graph: r0 = 0,02, α = 0,05, σ = 0,0002, κ = 0,1, n = 1, A1,x = 0,05, A1,y = −0,03 and ω = 0,2; 
0,25; 0,4; 0,5; 1.
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Figure 7: Simulation of the Zero-coupon bond price term structure for an arbitrary 
set of parameters
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Figure 7: Simulation of the Zero-coupon bond price term structure for an arbitrary set of parameters.

Parameter Values CIR Model:

Lightblue line: r0 = 0.015, θ = 0.1, σ = 0.005, κ = 0.1.

Parameter Values Cyclic Model :

Blue line: r0 = 0.015, Aθ = 0.2, Aσ = 0.001, κ = 0.1, ω = 0.08, ϕ = π, λ = 0.

Red line: r0 = 0.015, Aθ = 0.1, Aσ = 0.005, κ = 0.15, ω = 0.2, ϕ = π
2
, λ = 0.

Black line: r0 = 0.015, Aθ = 0.08, Aσ = 0.002, κ = 0.15, ω = 0.15, ϕ = π
4
, λ = 0.

Green line: r0 = 0.015, Aθ = 0.1, Aσ = 0.002, κ = 0.3, ω = 0.10, ϕ = π, λ = 0.

23

Parameter Values CIR Model:

Lightblue line: r0 = 0,015; θ = 0,1; σ = 0,005; κ = 0,1. 

Parameter Values Cyclic Model:

Blue line: r0 = 0,015; Aθ = 0,2; Aσ = 0,001; κ = 0,1; ω = 0,08; ϕ = π; λ = 0.

Red line: r0 = 0,015; Aθ = 0,1; Aσ = 0,005; κ = 0,15; ω = 0,2; ϕ = π/2; λ = 0.

Black line: r0 = 0,015; Aθ = 0,08; Aσ = 0,002; κ = 0,15; ω = 0,15; ϕ = π/4; λ = 0.

Green line: r0 = 0,015; Aθ = 0,1; Aσ = 0,002; κ = 0,3; ω = 0,10; ϕ = π; λ = 0.
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Figure 8: Term Structure of Interest Rates for an arbitrary set of parameters.

Parameter Values CIR Model:

Lightblue line: r0 = 0.015, θ = 0.1, σ = 0.005, κ = 0.1.

Parameter Values Cyclic Model :

Blue line: r0 = 0.015, Aθ = 0.2, Aσ = 0.001, κ = 0.1, ω = 0.08, ϕ = π, λ = 0.

Red line: r0 = 0.015, Aθ = 0.1, Aσ = 0.005, κ = 0.15, ω = 0.2, ϕ = π
2
, λ = 0.

Black line: r0 = 0.015, Aθ = 0.08, Aσ = 0.002, κ = 0.15, ω = 0.15, ϕ = π
4
, λ = 0.

Green line: r0 = 0.015, Aθ = 0.1, Aσ = 0.002, κ = 0.3, ω = 0.10, ϕ = π, λ = 0.

24

Parameter Values CIR Model:
Lightblue line: r0 = 0,015; θ= 0,1; σ = 0,005; κ = 0,1

Parameter Values Cyclic Model:

Blue line: r0 = 0,015; Aθ = 0,2; Aσ = 0,001; κ = 0,1; ω = 0,08; ϕ = π; λ = 0.

Red line: r0 = 0,015; Aθ = 0,1; Aσ = 0,005; κ = 0,15; ω = 0,2; ϕ = π/2; λ = 0.

Black line: r0 = 0,015; Aθ = 0,08; Aσ = 0,002; κ = 0,15; ω = 0,15; ϕ = π/4; λ = 0.

Green line: r0 = 0,015; Aθ = 0,1; Aσ = 0,002; κ = 0,3; ω = 0,10; ϕ = π; λ = 0.



Federico Daniel Platania
Cu

ad
er

no
s 

de
 In

ve
st

ig
ac

ió
n 

UCEIF



 16

/2
0

15

42

Figure 9: Term structure of interest rates for different values of the speed of 
mean reversion κ
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Figure 9: Term structure of interest rates for different values of the speed of mean reversion κ. In both models, the values of κ are: Blue Line:

= 0.05, Lightblue Line: = 0.1, Black Line: = 0.2, Green Line: = 0.4, and Red Line:= 0.8;

Parameter Values CIR Model : r0 = 0.01, θ = 0.03, σ = 0.0002.

Parameter Values Cyclic Model : r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, ω = 0.20, ϕ = 0, λ = 0.

25

In both models, the values of κ are:

Blue Line: = 0,05; Lightblue Line: = 0,1; Black Line: = 0,2; Green Line: = 0,4; and Red Line: = 0,8.

Parameter Values CIR Model: r0 = 0,01; θ= 0,03; σ = 0,0002.

Parameter Values Cyclic Model: r0 = 0,01; Aθ= 0,03; Aσ = 0,0002; ω = 0,20; ϕ = 0; λ = 0.
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Figure 10: Term structure of interest rates for different values of the volatility parameter. The values of σ and Aσ corresponding to CIR

and the Cyclic model, respectively, are: Blue Line: = 0.003, Lightblue Line: = 0.005, Black Line: = 0.007, Green Line: = 0.009, and Red

Line:= 0.011;

Parameter Values CIR Model : r0 = 0.01, θ = 0.05, κ = 0.05.

Parameter Values Cyclic Model : r0 = 0.01, Aθ = 0.05, κ = 0.05, ω = 0.08, ϕ = 0, λ = 0.

26

The values of σ and Aσ corresponding to CIR and the Cyclic model, respectively, are:  
Blue Line: = 0,003; Lightblue Line: = 0,005; Black Line: = 0,007; Green Line: = 0,009; and Red 
Line:= 0,011.

Parameter Values CIR Model: r0 = 0,01; θ= 0,05; κ = 0,05.

Parameter Values Cyclic Model: r0 = 0,01; Aθ= 0,05; κ = 0,05; ω = 0,08; ϕ = 0; λ = 0.
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Figure 11: Term structure of interest rates for different values of the mean 
reversion level
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Figure 11: Term structure of interest rates for different values of the mean reversion level. The values of θ and Aθ corresponding to CIR and

the Cyclic model, respectively, are: Blue Line: = 0.05, Lightblue Line: = 0.04, Black Line: = 0.03, Green Line: = 0.02, and Red Line:= 0.01;

Parameter Values CIR Model : r0 = 0.01, σ = 0.0002, κ = 0.1.

Parameter Values Cyclic Model : r0 = 0.01, Aσ = 0.0002, κ = 0.1, ω = 0.1, ϕ = 0, λ = 0.

27

The values of θ and Aθ corresponding to CIR and the Cyclic model, respectively, are: Blue Line: = 
0,05; Lightblue Line: = 0,04; Black Line: = 0,03; Green Line: = 0,02; and Red Line:= 0,01.

Parameter Values CIR Model: r0 = 0,01; σ = 0,0002; κ = 0,1,
Parameter Values Cyclic Model: r0 = 0,01; Aσ = 0,0002; κ = 0,1; ω = 0,1; ϕ = 0; λ = 0.
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π

2
, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.
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The values of ω in the first graph are: Blue Line: = 0,05; Lightblue Line: = 0,1; Black Line: = 0,15; 
Green Line: = 0,2; and Red Line:= 0,5; and r0 = 0,01; Aθ = 0,03; Aσ = 0,0002; κ = 0,1; ϕ = 0; λ = 0.
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. And r0 = 0,01, Aθ= 0,03, Aσ = 0,0002, κ = 0,1, ω = 0,2, λ = 0,
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Figure 13: Spot price time series simulation for an arbitrary set of parameters
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Figure 13: Spot price time series simulation for an arbitrary set of parameters. The first graph represents the drift process, that is setting

σ = 0. The second graph represents the whole process with σ = 0.2

Red line: α̃ = 1, κ = 0.5, An=1,x = 0.4, An=1,y = 0, An=3,x = 0, An=3,y = 0, ω = 1.5.

Black line: α̃ = 2, κ = 0.5, An=1,x = 1, An=1,y = π
2
, An=3,x = 0, An=3,y = 0, ω = 0.4.

Lightblue line: α̃ = 2, κ = 0.5, An=1,x = 0.8, An=1,y = 0, An=3,x = 0.4, An=3,y = 0, ω = 0.5.

Blue line: α̃ = 1.5, κ = 0.5, An=1,x = 0.6, An=1,y = 0, An=3,x = 0.5, An=3,y = 0, ω = 2

29

The first graph represents the drift process, that is setting σ = 0, The second graph represents 
the whole process with σ = 0,2.

Red line: α̃ = 1; κ = 0,5; An=1,x = 0,4; An=1,y = 0; An=3,x = 0; An=3,y = 0; ω = 1,5.

Black line: α̃ = 2; κ = 0,5; An=1,x = 1; An=1,y = 
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π

2
, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.

28

, An=3,x = 0; An=3,y = 0; ω = 0,4.

Lightblue line: α̃ = 2; κ = 0,5; An=1,x = 0,8; An=1,y = 0; An=3,x = 0,4; An=3,y = 0; ω = 0,5.
Blue line: �α̃ = 1,5; κ = 0,5; An=1,x = 0,6; An=1,y = 0; An=3,x = 0,5; An=3,y = 0; ω = 2.
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and no diffusion process, σ = 0
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Figure 14: Spot price time series simulation for an arbitrary set of parameters and no diffusion process, σ = 0. For both graphs: An=1,x =

0.8, An=1,y = 0, n = 1, ω = 0.5.

The first graph represents the spot price time series for κ = 0.5 and different values of α̃:

Red line: α̃ = 0.5, Violet line: α̃ = 1, Black line: α̃ = 1.5, Lightblue line: α̃ = 2, Blue line: α̃ = 2.5.

The second graph represents the spot price time series for α̃ = 2 and different values of κ:

Red line: κ = 0.1, Violet line: κ = 0.3, Black line: κ = 0.5, Lightblue line: κ = 0.7, Blue line: κ = 1.

30

For both graphs: An=1,x = 0,8; An=1,y = 0; n = 1; ω = 0,5.

The first graph represents the spot price time series for κ = 0,5 and different values of α̃:

Red line: α̃ = 0,5; Violet line: α̃ = 1, Black line: α̃ = 1,5; Lightblue line: � α̃ = 2; Blue line: α̃ = 2.5.

The second graph represents the spot price time series for α̃ = 2 and different values of κ:

Red line: κ = 0,1; Violet line: κ = 0,3; Black line: κ = 0,5; Lightblue line: κ = 0,7; Blue line: κ = 1.
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Figure 15: Spot price time series simulation for an arbitrary set of parameters 
and no diffusion process, σ = 0
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Figure 15: Spot price time series simulation for an arbitrary set of parameters and no diffusion process, σ = 0. For the three graphs:

α̃ = 2, κ = 0.5, n = 1, σ = 0.

The first graph represents the spot price time series for An=1,y = 0, ω = 0.5 and different values of An=1,x:

Red line: An=1,x = 0.1, Violet line: An=1,x = 0.5, Black line: An=1,x = 0.8, Lightblue line: An=1,x = 1.2, Blue line: An=1,x = 2.

The second graph represents the spot price time series for An=1,x = 0.8, ω = 0.5 and different values of An=1,y:

Red line: An=1,y = −0.5, Violet line: An=1,y = −0.1, Black line: An=1,y = 0, Lightblue line: An=1,y = 0.1, Blue line: An=1,y = 0.5.

The third graph represents the spot price time series for An=1,x = 0.8, An=1,y = 0 and different values of ω:

Red line: ω = 0.1, Violet line: ω = 0.5, Black line: ω = 1, Lightblue line: ω = 2, Blue line: ω = π.

31

For the three graphs: α = 2; κ = 0,5; n = 1; σ = 0.

The first graph represents the spot price time series for An=1,y = 0; ω = 0,5 and different values 
of An=1,x :

Red line: An=1,x = 0,1; Violet line: An=1,x = 0,5; Black line: An=1,x = 0,8; Lightblue line: An=1,x 

= 1,2; Blue line: An=1,x = 2. 

The second graph represents the spot price time series for An=1,x = 0,8; ω = 0,5 and different 
values of An=1,y :

Red line: An=1,y  = −0,5; Violet line: An=1,y = −0,1; Black line: An=1,y  = 0; Lightblue line: An=1,y  
= 0,1; Blue line: An=1,y  = 0,5.

The third graph represents the spot price time series for An=1,x = 0,8, An=1,y = 0 and different 
values of ω:

Red line: ω = 0,1; Violet line: ω = 0,5; Black line: ω = 1; Lightblue line: ω = 2; Blue line: 
ω = π.
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This thesis studies the stochastic behaviour of interest rates and commodity 
prices, extending the existing literature by allowing the underlying state 
variable to capture any possible seasonal or cyclical behaviour. In the 
first chapter, we propose a new model for the term structure of interest 
rates assuming that the instantaneous spot rate converges to a cyclical 
long-term level characterized by a Fourier series. Under this framework, 
we derive analytical expressions for the valuation of bonds and several 
interest rate derivative assets. The second chapter introduces a new square-
root model for the yield curve where both the mean reversion level and the 
volatility are described by a harmonic oscillator. This model specification 
incorporates a good deal of flexibility preserving the analytical tractability. 
In the final chapter, we present a model for the logarithm of the commodity 
spot price with a reversion to a time dependent long-run level described 
by a Fourier series, obtaining closed-form expressions for a wide range of 
derivatives and study the fitting performance to market data.
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