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fundaciÓn de la uniVersidad de cantaBria para el 
estudio y la inVestiGaciÓn del sector financiero 
(uceif) 

La Fundación de la Universidad de Cantabria para el Estudio y la Inves-
tigación del Sector Financiero (UCEIF), promovida por la UC y el Banco 
Santander, nació en el año 2006 con el fin de convertirse en un referente 
nacional e internacional en la generación y transmisión del conocimien-
to, la formación de alto nivel y la I+D en el sector financiero. Actual-
mente viene desarrollando proyectos de gran envergadura, organizando 
su actividad en dos ámbitos de actuación: banca y finanzas, por un lado, 
y actividad empresarial, con especial atención al emprendimiento y a 
las PYMES, por otro. Ambas se articulan por medio de los dos centros 
creados en el seno de la Fundación UCEIF y gestionados por ella, en 
2012: el Santander Financial Institute (SANFI) y el Centro Internacional 
Santander Emprendimiento (CISE). 

La misión del Santander Financial Institute (SANFI) es la generación, di-
fusión y transferencia del conocimiento sobre el sector financiero, para 
lo que cual identifica, desarrolla, apoya y promociona el talento y la in-
novación que ostente un liderazgo sostenible y responsable socialmente, 
con el propósito de contribuir al bienestar, desarrollo y progreso social 
como centro líder por su excelencia e impacto social.

En el ámbito de SANFI la Fundación tiene encomendada la organiza-
ción, coordinación y desarrollo, entre otros, de los siguientes proyectos, 
cuyo detalle puede ser consultado en la web de la Fundación (www.
fundacion-uceif.org):
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•	 Máster	 en	 Banca	 y	 Mercados	 Financieros	 (hoy	 impartido	 en	
Santander, México, Marruecos y Brasil), que constituye el eje 
nuclear de una formación altamente especializada organizada 
desde la Fundación con la colaboración de Banco Santander, al 
que se unen otros programas de postgrado externos e “In Com-
pany”.

•	 Archivo	Histórico	Banco	Santander,	 que	 comprende	 la	 clasifi-
cación,	catalogación,	administración	y	custodia	del	archivo,	así	
como la investigación y difusión de sus fondos.

•	 Educación	Financiera,	dirigido	a	fomentar	la	cultura	financiera,	
sustentado a través de las plataformas online generadas, como 
Finanzas para Mortales (FxM), utilizando y aplicando las nuevas 
tecnologías y los medios más modernos. 

•	 Atracción	de	Talento,	con	diferentes	acciones	para	el	desarrollo	
de líneas de investigación estratégicas dedicadas al estudio de 
los “Mercados Globales”, al desarrollo e innovación de “Procesos 
Bancarios”,	al	conocimiento	de	la	“Historia	Bancaria	y	Financie-
ra” y al desarrollo del “Financial Supercomputing”.

•	 Becas	de	Investigación,	con	la	finalidad	de	colaborar	en	la	rea-
lización de Proyectos de Investigación, especialmente de jóve-
nes investigadores, que posibiliten el avance en el conocimiento, 
metodologías y técnicas aplicables en el ejercicio de la actividad 
financiera, en particular las que llevan a cabo las entidades ban-
carias, para mejorar el crecimiento económico, el desarrollo de 
los países y el bienestar de los ciudadanos.

•	 Premios	a	Tesis	Doctorales,	con	el	fin	de	promover	y	reconocer	
la generación del conocimiento a través de actuaciones en el 
ámbito del doctorado que desarrollen, impulsen el estudio y la 
investigación en el Sector Financiero. 

•	 Y	 por	 último,	 la	 línea	 editorial,	 en	 la	 que	 se	 enmarcan	 estos	
Cuadernos de Investigación, con el objetivo de poner a disposición 
de la sociedad en general, y de la comunidad académica y 
profesional en particular, el conocimiento generado en torno al 
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ámbito de la Fundación, y especialmente los resultados de las 
Becas,	Ayudas	y	Premios	a	Tesis	Doctorales.	

La Fundación también tiene encomendado el desarrollo y gestión del 
CISE como Centro de referencia en el sistema universitario internacional 
en la investigación, transferencia de conocimiento y formación en 
emprendimiento. Impulsa proyectos de investigación sobre el valor de 
la cultura emprendedora y las nuevas metodologías de emprendimiento, 
llevando a cabo el desarrollo de programas docentes y actividades 
formativas de máxima calidad y estimulando la cultura emprendedora 
y	la	innovación	con	el	fin	último	de	contribuir	al	progreso	económico	y	
social. La Fundación, por medio de CISE organiza, coordina y desarrolla, 
entre otros, los siguientes proyectos:

•	 Formación	y	Difusión	del	conocimiento	y	cultura	emprendedora,	
con el desarrollo de diversos programas: curso para formadores 
en emprendimiento en alianza con Babson College, Máster en 
Emprendimiento de carácter transversal, estudiante por empren-
dedor (e2), Doc-e, entre otros.

•	 Global	Entrepreneurship	Monitor	(GEM)	España,	siendo	el	repre-
sentante institucional del país a nivel mundial en este programa 
de investigación, difusión y compromiso con el Emprendimien-
to, los emprendedores y la creación de empresas, de alcance 
mundial.

•	 “YUZZ	Jóvenes	con	Ideas”,	concurso	de	talento	tecnológico	para	
jóvenes de 18 a 30 años que se desarrolla, con una periodicidad 
anual y ámbito nacional.

•	 Instituto	del	Conocimiento	–	Santander	Advance,	programa	de	
apoyo a las Pymes en diversos aspectos para mejorar su gestión 
y competitividad, gestionando procesos formativos, mediante la 
organización y desarrollo de cursos y otras actividades, así como 
la generación de información sobre el tejido empresarial de la 
PYME por medio de un Observatorio Pymes.
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Las actividades desarrolladas por la Fundación UCEIF, se enmarcan 
dentro del Área de Banca, Finanzas y Actividad Empresarial del 
proyecto Campus de Excelencia Cantabria Campus Internacional, donde 
periódicamente se organizan diversos cursos y encuentros con la UIMP 
y la UC, así como los “Encuentros de Economistas Especialistas en 
Iberoamérica” convocados por la SEGIB anualmente.

Finalmente destacar su participación como patrono en la creación, en 
alianza con las Universidades de Murcia, Politécnica de Cartagena y 
Cantabria, de la Fundación para el Análisis Estratégico y Desarrollo de 
la Pyme, en cuyo seno se crea la Red Internacional de Investigadores en 
Pymes. Fruto de esta actuación se elaboran diversos Informes sobre la 
Pyme en Iberoamérica, tanto a nivel de la región en su conjunto como 
en los distintos países.

Francisco Javier Martínez García

Director de la Fundación UCEIF
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introduction

The	stochastic	behaviour	of	 interest	rates	and	commodity	prices	have	
been	thoroughly	analysed	in	the	academic	literature	and	constitutes	an	
issue of special relevance for practitioners in financial markets. Previous 
studies	have	proposed	numerous	processes	to	model	the	stochastic	com-
ponent	of	these	assets,	most	of	them	assuming	a	mean	reverting	process.

On	the	one	hand,	Table	1	presents	some	spot	rate	models	proposed	in	
the	 academic	 literature,	 classified	 in	 two	 categories:	 endogenous	 and	
exogenous.	Endogenous	models	assume	 that	changes	 in	 interest	 rates	
are	 affected	by	one	or	more	 factors	 and	propose	 a	 certain	 stochastic	
behaviour	 for	 the	 factors.	Under	 those	 assumptions,	 the	 current	 term	
structure	can	be	derived	as	an	implication	from	the	model.	Popular	ex-
amples	of	one-factor	models	are	Vasicek	(1977),	Brennan	and	Schwartz	
(1980),	or	Cox	et	al.	(1985).	The	downside	of	these	models	is	the	lack	of	
an	appropriate	fit	to	observed	interest	rate	data.	To	mitigate	this	draw-
back	some	multi-factor	models	have	been	proposed.	See,	for	instance,	
Brennan	and	Schwartz	(1979),	Schaefer	and	Schwartz	(1984),	Longstaff	
and	Schwartz	(1992),	Duffie	and	Kan	(1996),	or	Chen	(1996).	In	contrast,	
exogenous	models	consider	the	current	term	structure	as	an	input	and	
aim	 to	prevent	 arbitrage	opportunities	 considering	 interest	 rates	with	
different	maturities.	A	pioneer	work	in	this	area	was	made	by	Ho	and	
Lee	 (1986)	 who	 proposed	 a	 model	 consistent	 with	 observed	 data.	 As	
this	model	implies	a	Gaussian	distribution	and	no	mean	reversion	for	
interest	 rates,	 several	 papers	 have	 specified	 and	 analysed	 alternative	
model	specifications	such	as	Black	et	al.	(1990),	Hull	and	White	(1990,	
1993),	Black	and	Karasinski	 (1991),	Heath	et	al.	 (1992),	and	Mercurio	
and Moraleda (2000). For a complete survey on term structure models 
see,	for	instance,	Webber	and	James	(2001),	Brigo	and	Mercurio	(2006),	
or Filipovi´c (2009).

On	 the	 other	 hand,	we	 can	 also	find	 a	 significant	 number	 of	 papers	
addressing	empirically	and	theoretically	the	commodity	valuation	prob-
lem.	 For	 instance,	 Schwartz	 (1997)	 compares	 three	 mean-	 reverting	
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models	for	the	stochastic	behaviour	of	commodity,	i)	a	simple	one-fac-
tor	model	 based	 on	 the	 logarithm	of	 the	 commodity	 spot	 price,	 ii)	 a	
two-factor	model	proposed	in	Gibson	and	Schwartz	(1990),	where	the	
second	factor	accounts	for	the	convenience	yield	of	the	commodity,	and	
iii)	an	extension	of	the	Gibson	and	Schwartz	(1990)	model	that	incor-
porates	the	stochastic	behaviour	of	interest	rates	as	in	Vasicek	(1977).	
Schwartz	and	Smith	(2000)	present	a	representation	of	the	two-factor	
model,	where	 the	 log-spot	price	 is	described	as	 the	 sum	of	 two	 state	
variables	referred	to	as	the	short-term	deviation	in	prices	and	the	equi-
librium	price	level,	respectively.	Moreover,	Lucia	and	Schwartz	(2002)	
address	the	possible	seasonal	behaviour	of	the	commodity	price.	In	this	
paper	the	authors	use	the	Scandinavian	electricity	market	to	compare	a	
number	of	models	based	on	the	spot	price	and	the	logarithm	of	the	spot	
price,	where	the	seasonal	component	is	arbitrary	added	in	the	spot	(log-
spot)	price	and	modelled	by	a	deterministic	trigonometric	function	with	
annual	 frequency.	On	 this	 regard,	Cartea	 and	Figueroa	 (2005)	 extend	
the	one-factor	model	allowing	the	stochastic	process	to	follow	a	zero	
level	mean-reverting	jump-diffusion	process	for	the	underlying	log-spot	
price	and	the	exponential	of	the	trigonometric	function	is	replaced	by	
a	Fourier	series	of	order	five.	For	a	thorough	description	of	some	com-
modity models see, for instance, Pilipovi´c (1998).

In	this	work	we	extend	the	existing	literature	allowing	the	underlying	
state	 variable	 to	 capture	 any	possible	 seasonal	 or	 cyclical	 behaviour.	
On	this	regard,	section	2	analyses	a	continuous-time	model	for	the	term	
structure	of	 interest	rates	where	the	spot	rate	 is	assumed	to	converge	
to	a	long-	term	level	that	changes	over	time	according	to	a	Fourier	se-
ries.	Section	3	proposes	a	square-root	model	where	the	instantaneous	
interest rate is pulled back to a certain time-dependent long term level 
characterized	 by	 an	 harmonic	 oscillator.	 Section	 4	 introduces	 a	 con-
tinuous-time	 model	 based	 on	 an	 Ornstein-Uhlenbeck	 process	 for	 the	
logarithm	of	the	commodity	spot	price,	with	a	reversion	to	a	time	de-
pendent	long-run	level,	 the	time	variation	of	the	long-run	price	level	
being	characterized	by	a	Fourier	series.	Finally,	in	section	5	we	present	
some concluding remarks.
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a term structure model with cyclical mean reVersion

In	 this	 section	 we	 introduce	 a	 continuous-time	 model	 for	 the	 term	
structure	of	 interest	 rates	 assuming	 that	 the	 spot	 rate	 converges	 to	a	
long-term	 level	 that	 changes	over	 time	according	 to	a	Fourier	 series.	
Under	this	framework,	we	present	the	partial	differential	equation	that	
must	be	satisfied	by	the	price	of	any	derivative	asset,	obtain	the	bond	
pricing	equations,	and	characterize	the	term	structure	of	interest	rates.

First, let rt denote	the	instantaneous	interest	rate	available	at	time	t.	We	
assume	that	the	time	evolution	of	rt is	given	by	the	Ornstein-Uhlenbeck	
process,	defined	by	a	stochastic	differential	equation

process to follow a zero level mean-reverting jump-diffusion process for the underlying log-spot price

and the exponential of the trigonometric function is replaced by a Fourier series of order five. For a

thorough description of some commodity models see, for instance, Pilipović (1998).

In this work we extend the existing literature allowing the underlying state variable to capture

any possible seasonal or cyclical behaviour. On this regard, section 2 analyses a continuous-time

model for the term structure of interest rates where the spot rate is assumed to converge to a long-

term level that changes over time according to a Fourier series. Section 3 proposes a square-root

model where the instantaneous interest rate is pulled back to a certain time-dependent long term

level characterized by an harmonic oscillator. Section 4 introduces a continuous-time model based

on an Ornstein-Uhlenbeck process for the logarithm of the commodity spot price, with a reversion

to a time dependent long-run level, the time variation of the long-run price level being characterized

by a Fourier series. Finally, in section 5 we present some concluding remarks.

2 A Term Structure Model with Cyclical Mean Reversion

In this section we introduce a continuous-time model for the term structure of interest rates assuming

that the spot rate converges to a long-term level that changes over time according to a Fourier series.

Under this framework, we present the partial differential equation that must be satisfied by the price

of any derivative asset, obtain the bond pricing equations, and characterize the term structure of

interest rates.

First, let rt denote the instantaneous interest rate available at time t. We assume that the

time evolution of rt is given by the Ornstein-Uhlenbeck process, defined by a stochastic differential

equation

drt = κ(f(t)− rt)dt+ σdWt (1)

where κ, σ ∈ R
+ and Wt is a standard Wiener process. In addition, we assume that the mean-

reversion level, f(t), follows a time-dependent process driven by a Fourier series:

f(t) =

∞∑

n=0

Re
[
Ane

inωt
]

where we only consider the real part of the Fourier series since it is the only one that makes economic

sense. Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail,

An = An,x + iAn,y where An,x, An,y ∈ R. Hence, An,x and An,y denote the amplitude and phase

of the fluctuations in the instantaneous rate, respectively. Moreover, this model nests the model in

Vasicek (1977) by taking An = 0, ∀n ∈ N− {0}.
Now, let Λ(rt, t) denote the market price of risk, which is assumed constant, Λ(rt, t) = λ. Then,

4
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In this work we extend the existing literature allowing the underlying state variable to capture

any possible seasonal or cyclical behaviour. On this regard, section 2 analyses a continuous-time

model for the term structure of interest rates where the spot rate is assumed to converge to a long-

term level that changes over time according to a Fourier series. Section 3 proposes a square-root

model where the instantaneous interest rate is pulled back to a certain time-dependent long term

level characterized by an harmonic oscillator. Section 4 introduces a continuous-time model based

on an Ornstein-Uhlenbeck process for the logarithm of the commodity spot price, with a reversion

to a time dependent long-run level, the time variation of the long-run price level being characterized

by a Fourier series. Finally, in section 5 we present some concluding remarks.

2 A Term Structure Model with Cyclical Mean Reversion

In this section we introduce a continuous-time model for the term structure of interest rates assuming

that the spot rate converges to a long-term level that changes over time according to a Fourier series.

Under this framework, we present the partial differential equation that must be satisfied by the price

of any derivative asset, obtain the bond pricing equations, and characterize the term structure of

interest rates.

First, let rt denote the instantaneous interest rate available at time t. We assume that the

time evolution of rt is given by the Ornstein-Uhlenbeck process, defined by a stochastic differential

equation

drt = κ(f(t)− rt)dt+ σdWt (1)

where κ, σ ∈ R
+ and Wt is a standard Wiener process. In addition, we assume that the mean-

reversion level, f(t), follows a time-dependent process driven by a Fourier series:

f(t) =

∞∑

n=0

Re
[
Ane

inωt
]

where we only consider the real part of the Fourier series since it is the only one that makes economic

sense. Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail,

An = An,x + iAn,y where An,x, An,y ∈ R. Hence, An,x and An,y denote the amplitude and phase

of the fluctuations in the instantaneous rate, respectively. Moreover, this model nests the model in

Vasicek (1977) by taking An = 0, ∀n ∈ N− {0}.
Now, let Λ(rt, t) denote the market price of risk, which is assumed constant, Λ(rt, t) = λ. Then,

4

where	we	only	consider	the	real	part	of	the	Fourier	series	since	it	is	the	
only	one	 that	makes	economic	sense.	Note	 that,	∀n | An ∈	C,	 so	 that	
there	is	a	phase	factor	contained	in	An. In more detail, An = An,x + iAn,y 

where	An,x, An,y ∈	R.	Hence,	An,x and An,y denote	the	amplitude	and	phase	
of	the	fluctuations	in	the	instantaneous	rate,	respectively.	Moreover,	this	
model	nests	the	model	in	Vasicek	(1977)	by	taking	An = 0, ∀n ∈ N − {0}.

Now, let Λ(rt , t)	 denote	 the	 market	 price	 of	 risk,	 which	 is	 assumed	
constant, Λ(rt, t) = λ.	Then,	the	risk-neutral	version	of	the	process	(1)	is	
given by
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the risk-neutral version of the process (1) is given by

drt = µrdt+ σdW̃t (2)

where

µr = κ (α+ g(t)− rt) (3)

α = A0 −
λσ

κ
(4)

g(t) =

∞∑

n=1

Re
[
Ane

inωt
]
= f(t)−A0 (5)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure P̃ .

The following Proposition establishes the solution of the stochastic differential equation (2).

Proposition 1 The solution of the risk-neutral process followed by the instantaneous interest rate

is given as1

rs = e−κ(s−t)rt +
(
1− e−κ(s−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωs − e−κ(s−t)+inωt

)]
+ σ

∫ s

t
e−κ(s−u)dW̃u

From Proposition 1, it is clear that instantaneous interest rate follows a Normal distribution. Its

first two statistical moments under P̃ are given as

Ẽ[rT | rt] = e−κ(T−t)rt +
(
1− e−κ(T−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωT − e−κ(T−t)+inωt

)]
(6)

Ṽ [rT | rt] = Ṽ

[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(7)

where we have applied the isometry property for stochastic integrals in the variance.

2.1 Bond Pricing and the Term Structure of Interest Rates
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Ṽ [rT | rt] = Ṽ

[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(7)

where we have applied the isometry property for stochastic integrals in the variance.

2.1 Bond Pricing and the Term Structure of Interest Rates

Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at maturity T . Applying
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Itô’s Lemma, standard no-arbitrage arguments and some trivial algebra, we get the following partial

differential equation (PDE):

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0

1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.

5

the risk-neutral version of the process (1) is given by

drt = µrdt+ σdW̃t (2)

where

µr = κ (α+ g(t)− rt) (3)

α = A0 −
λσ

κ
(4)

g(t) =

∞∑

n=1

Re
[
Ane

inωt
]
= f(t)−A0 (5)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure P̃ .

The following Proposition establishes the solution of the stochastic differential equation (2).

Proposition 1 The solution of the risk-neutral process followed by the instantaneous interest rate

is given as1

rs = e−κ(s−t)rt +
(
1− e−κ(s−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωs − e−κ(s−t)+inωt

)]
+ σ

∫ s

t
e−κ(s−u)dW̃u

From Proposition 1, it is clear that instantaneous interest rate follows a Normal distribution. Its

first two statistical moments under P̃ are given as
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Itô’s Lemma, standard no-arbitrage arguments and some trivial algebra, we get the following partial

differential equation (PDE):

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0

1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.

5

 
(6)

1.	 This	result	arises	as	e−k(s−t) is square-integrable in [t, s],	so	that	it	belongs	to	a	Hilbert	space.
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Itô’s Lemma, standard no-arbitrage arguments and some trivial algebra, we get the following partial

differential equation (PDE):

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0

1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.
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that	must	be	verified	by	the	price	of	any	derivative.

Replacing	expression	(1)	and	the	constant	market	price	of	risk	λ into (8), 
we	get	the	PDE	for	the	bond	price:

that must be verified by the price of any derivative.

Replacing expression (1) and the constant market price of risk λ into (8), we get the PDE for

the bond price:

Pt + Prκ (α+ g(t) − rt) + Prr
σ2

2
− Prt = 0

subject to the terminal condition P (rT , T, T ) = 1, ∀ rT .

Using probabilistic techniques, the solution of this PDE can be written as a risk-neutral condi-

tional expectation, that is,

P (rt, t, T ) = Ẽ
[
e−

∫ T
t

rsds | rt
]

Looking at Proposition 1, it is clear that
∫ T
t rsds is a random Normal variable. Then, straightforward

algebra leads to the solution of this PDE as given in the following Proposition.

Proposition 2 The price at time t of a zero-coupon bond with maturity T and $1 face value is given
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Since all affine models provide an exponential-affine functional form for bond pricing, we can

immediately rewrite the previous Proposition to obtain the next one.

Proposition 3 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by
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Ẽ

[∫ T

t
rsds | rt

]
=

1− e−κ(T−t)

κ
rt −

(
1− e−κ(T−t)

κ
− (T − t)

)
α

+

∞∑

n=1

Re

[
An

nω(κ+ inω)

(
einωt

(
nωe−κ(T−t) + iκ− nω

)
− iκeinωT

)]
(10)

Ṽ
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Looking	 at	Proposition	1,	 it	 is	 clear	 that	 ʃtT rsds is a random Normal 
variable.	Then,	straightforward	algebra	leads	to	the	solution	of	this	PDE	
as	given	in	the	following	Proposition.
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In	Figure	1	we	plot	the	term	structure	of	bond	prices	for	three	different	
set	of	parameters	 in	 the	Fourier	model	against	 the	structure	obtained	
with	Vasicek’s	model.	We	can	see	the	higher	flexibility	of	our	proposed	
model	approach	to	fit	different	shapes	of	the	term	structure.

Under	this	framework	and	considering	the	bond	price	P (rt, t, T) given by 
Proposition	3,	the	term	structure	of	interest	rates	is	fully	characterized	
in	the	following	Corollary.

Corollary 1. The yield to maturity, R(rt, t, T ), is given by
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Fourier model against the structure obtained with Vasicek’s model. We can see the higher flexibility

of our proposed model approach to fit different shapes of the term structure.

Under this framework and considering the bond price P (rt, t, T ) given by Proposition 3, the term

structure of interest rates is fully characterized in the following Corollary.

Corollary 1 The yield to maturity, R(rt, t, T ), is given by

R(rt, t, T ) = −1

τ
lnP (rt, t, T ), τ = T − t

The short-term interest rate is defined as the instantaneous interest rate at time t, that is,

rt = lim
τ→0

R(rt, t, T ) = R(rt, t, t)

The instantaneous forward rate is given as

f(rt, t, T ) = −∂ ln(P (rt, t, T ))

∂T

Figure 2 shows the yield curve for three different set of parameters in the Fourier model against

Vasicek’s model. Clearly, even for small number of terms (n) in the expansion, the Fourier model

is capable of replicating different yield curve shapes such as upward sloping, downward sloping,

humped, and inverted humped. On this respect, it is interesting to stress that our model should be

able to replicate any yield curve shape as n goes to infinity, since the yield curve function belongs

to a Hilbert space L2([t, T ]), and the Fourier series can be made to converge in quadratic mean to

any function in such a space.

For illustrative purposes, Figures 3 and 4 show how the term structure of interest rates responds

to different values of speed of reversion to the mean and the volatility parameter, respectively. Both

models provide a similar pattern for the chosen parameters: the lower the speed of mean reversion,

the lower the yield. Additionally, in the Fourier model, the lower the speed of mean reversion, the

flatter the term structure. Moreover, Figure 4 shows that the yield decreases with volatility. Figure

5 compare how the term structure of interest rates responds in the Vasicek model and the Fourier

model to different values of the common α parameter. Finally, Figure 6 displays how the term

structure under the Fourier model responds to changes in its parameters An,x, An,y and ω. The

most obvious effect is that of changes in the phase An,y. We can see how the position and height of

the peak in the term structure occur in opposite places for different phases. All these representations

confirm that our proposed model provides a great flexibility even for small number of terms in the

Fourier expansion.
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Figure	2	shows	the	yield	curve	for	three	different	set	of	parameters	in	the	
Fourier model against Vasicek’s model. Clearly, even for small number 
of terms (n)	in	the	expansion,	the	Fourier	model	is	capable	of	replicating	
different	yield	curve	shapes	such	as	upward	sloping,	downward	sloping,	
humped,	and	inverted	humped.	On	this	respect,	it	is	interesting	to	stress	
that	our	model	should	be	able	to	replicate	any	yield	curve	shape	as	n	
goes	to	infinity,	since	the	yield	curve	function	belongs	to	a	Hilbert	space	
L2([t, T]),	and	the	Fourier	series	can	be	made	to	converge	in	quadratic	
mean	to	any	function	in	such	a	space.
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For	illustrative	purposes,	Figures	3	and	4	show	how	the	term	structure	
of	interest	rates	responds	to	different	values	of	speed	of	reversion	to	the	
mean	 and	 the	 volatility	 parameter,	 respectively.	 Both	models	 provide	
a	 similar	 pattern	 for	 the	 chosen	 parameters:	 the	 lower	 the	 speed	 of	
mean	reversion,	the	lower	the	yield.	Additionally,	in	the	Fourier	model,	
the	 lower	 the	 speed	of	mean	 reversion,	 the	flatter	 the	 term	structure.	
Moreover,	Figure	4	shows	that	the	yield	decreases	with	volatility.	Figure	5 
compare	how	the	term	structure	of	interest	rates	responds	in	the	Vasicek	
model	 and	 the	 Fourier	 model	 to	 different	 values	 of	 the	 common	 α 
parameter.	Finally,	Figure	6	displays	how	the	term	structure	under	the	
Fourier	model	 responds	 to	changes	 in	 its	parameters	An,x, An,y and ω. 
The	most	obvious	effect	is	that	of	changes	in	the	phase	An,y.	We	can	see	
how	the	position	and	height	of	the	peak	in	the	term	structure	occur	in	
opposite	places	for	different	phases.	All	 these	representations	confirm	
that	 our	 proposed	 model	 provides	 a	 great	 flexibility	 even	 for	 small	
number	of	terms	in	the	Fourier	expansion.
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deriVatiVes pricinG under a new macro-financial 
square-root process for the term structure of 
interest rates

Unlike	any	other	one-factor	model	that	allow	the	spot	rate	process	for	
time-dependent	 parameters	 (see,	 for	 instance,	 Hull	 and	 White	 (1990,	
1993)),	we	now	assume	that	the	mean	reversion	level	follows	a	cyclical	
process.	 In	 addition,	we	 also	 consider	 that	 the	 interest	 rate	 volatility	
depends	on	the	interest	rate	level.	Thus,	we	model	the	behaviour	of	both	
variables	assuming	an	harmonic	oscillator	as	follows

3 Derivatives Pricing under a New Macro-financial Square-root

Process for the Term Structure of Interest Rates

Unlike any other one-factor model that allow the spot rate process for time-dependent parameters

(see, for instance, Hull and White (1990, 1993)), we now assume that the mean reversion level

follows a cyclical process. In addition, we also consider that the interest rate volatility depends

on the interest rate level. Thus, we model the behaviour of both variables assuming an harmonic

oscillator as follows

f(t) = A sin(ϕ− ωt)

where A denotes the amplitude of the wave, ϕ the offset phase, and w the temporal frequency.

We now define the mean reversion level, θt, and the volatility, σ2
t , as

θt = Aθ sin (2 ϕ− ωt)

σ2
t = Aσ sin (2 ϕ− ωt)

Hence, the positiveness of the mean reversion level and the interest rate volatility is guaranteed.

Let rt denote the instantaneous interest rate available at time t whose dynamic is

drt = µrdt+ σrdWt

where Wt is a standard Wiener process and

µr = κ(θt − rt)

σr = σt
√
rt

where κ ∈ R
+. Looking at these expressions, it is clear that our model nests that presented in Cox

et al. (1985) taking ω = 0 in equations (14)-(15).

For square-root processes of this type, Cox et al. (1985) shows that the distribution function of

interest rates is a rescaled non-central chi-square with δ degrees of freedom. Note that, whenever

δ is not a positive integer, the distribution of rt is unknown. Besides, the dimension of the process

rt is given by δ = 4θtκ
σ2
t
. As both waves are in phase, the model’s dimension can be represented as

δ = 4Aθκ
Aσ

> 0. 2 Our model guarantees the positiveness of interest rates. On this respect, Feller

(1951) studied the Fokker-Plank-Kolmogorov equation for the transition density and showed that

rt > 0 if δ ≥ 2, however it can become null if δ < 2 but will never become negative.

2Note that, if sin(ϕ − ωt) is equal to zero, then δ becomes indeterminate. As this case would only occur for a

infinitesimal period of time, we do not consider this possibility.
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where	κ ∈ R+.	Looking	at	 these	expressions,	 it	 is	clear	that	our	model	
nests	that	presented	in	Cox	et al. (1985) taking ω	=	0	in	equations	(14)-
(15).

For	 square-root	 processes	 of	 this	 type,	 Cox et al.	 (1985)	 shows	 that	
the	distribution	function	of	interest	rates	is	a	rescaled	non-central	chi-
square	with	δ degrees	of	freedom.	Note	that,	whenever	δ is not a positive 
integer,	the	distribution	of	rt is	unknown.	Besides,	the	dimension	of	the	
process rt is given by 
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2. Our model guarantees 
the	positiveness	of	interest	rates.	On	this	respect,	Feller	(1951)	studied	
the	Fokker-Plank-Kolmogorov	equation	for	the	transition	density	and	
showed	that	rt > 0 if δ ≥	2,	however	it	can	become	null	if	δ < 2 but will 
never become negative.

3.1  Bond Pricing and the Term Structure of Interest Rates

This	section	presents	closed-form	expressions	for	the	price	of	zero-cou-
pon bonds and, later, we analytically compute closed-form formulas for 
the	prices	of	different	securities.

Let P (rt, t, T)	denote	the	price	at	time	t	of	a	zero-coupon	bond	that	pays	
$1 at maturity T	.	Then,	the	bond	price	dynamics	is	given	by	the	process
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Then, the bond price dynamics is given by the process

dP = µP (rt, t, T )P (rt, t, T )dt+ σP (rt, t, T )P (rt, t, T )dWt (19)

Applying Itô’s Lemma and using (16), it can be shown that

µP =
1

P

(
Pt + µrPr +

1

2
σ2
rPrr

)
(20)

σP = σr
Pr

P
(21)

where arguments have been omitted and subscripts in P indicate the corresponding partial derivative.

Applying standard no-arbitrage arguments, there exists a factor Λ(rt, t), called market price of risk,

such that

µP (rt, t, T )− rt = Λ(rt, t)σP (rt, t, T ) (22)

Finally, some trivial algebra leads to the following partial differential equation (PDE)

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0 (23)

that must be verified by the price of any derivative.

Considering a market price of risk such as

Λ(rt, t) =
λt
√
rt

σt
(24)

Using expressions (18)-(24), the PDE (23) becomes

Pt(rt, t, T ) + (κ(θt − rt)− λtrt)Pr(rt, t, T ) +
1

2
σ2
t rtPrr(rt, t, T )− rtP (rt, t, T ) = 0 (25)

The solution of this PDE, subject to the boundary condition P (rT , T, T ) = 1, ∀rT , is given by

the following Proposition.

Proposition 4 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, τ) = A(τ)e−B(τ)rt
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2.	 Note	that,	if	sin	(ϕ − ωt)	is	equal	to	zero,	then	δ	becomes	indeterminate.	As	this	case	would	only	occur	
for	a	infinitesimal	period	of	time,	we	do	not	consider	this	possibility.
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Applying Itô’s Lemma and using (16), it can be shown that

µP =
1

P

(
Pt + µrPr +

1

2
σ2
rPrr

)
(20)

σP = σr
Pr

P
(21)

where arguments have been omitted and subscripts in P indicate the corresponding partial derivative.

Applying standard no-arbitrage arguments, there exists a factor Λ(rt, t), called market price of risk,

such that

µP (rt, t, T )− rt = Λ(rt, t)σP (rt, t, T ) (22)

Finally, some trivial algebra leads to the following partial differential equation (PDE)

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0 (23)

that must be verified by the price of any derivative.

Considering a market price of risk such as

Λ(rt, t) =
λt
√
rt

σt
(24)

Using expressions (18)-(24), the PDE (23) becomes

Pt(rt, t, T ) + (κ(θt − rt)− λtrt)Pr(rt, t, T ) +
1

2
σ2
t rtPrr(rt, t, T )− rtP (rt, t, T ) = 0 (25)

The solution of this PDE, subject to the boundary condition P (rT , T, T ) = 1, ∀rT , is given by

the following Proposition.

Proposition 4 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, τ) = A(τ)e−B(τ)rt

9

3.1 Bond Pricing and the Term Structure of Interest Rates

This section presents closed-form expressions for the price of zero-coupon bonds and, later, we

analytically compute closed-form formulas for the prices of different securities.

Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at maturity T .

Then, the bond price dynamics is given by the process

dP = µP (rt, t, T )P (rt, t, T )dt+ σP (rt, t, T )P (rt, t, T )dWt (19)
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where

A(τ) = exp

{
−
∫ T

t
κθtB(τ)dt

}

B(τ) =
c1MC(a, q, x) +MS(a, q, x)

1
2(λ+ κ) (c1MC(a, q, x) +MS(a, q, x)) + ω (c1MCP (a, q, x) +MSP (a, q, x))

a = −Aσ + (λ+ κ)2

4ω2

q = − Aσ

8ω2

x = ϕ− ωt

c1 = −MS(a, q, ϕ − ωT )

MC(a, q, ϕ− ωT )

τ = T − t

where θt is given by (14), MC and MS represent the Mathieu cosine and sine function, respectively,

and MCP and MSP represent the derivative with respect to x of the Mathieu cosine and sine function,

respectively.

Figure 7 compares the bond price in the CIR model against three alternatives in our model.

We check that, in our model, the bond price does not decrease monotonically with time to matu-

rity. Additionally, we provide much more flexibility than the CIR model with the same analytical

tractability. We can also visualize the presence of humps, which is a very desirable effect not only

here but also in any interest rate derivative.

Corollary 2 The yield to maturity, R(rt, t, T ), is given by

R(rt, t, T ) = −1

τ
lnP (rt, t, T ), τ = T − t

The short-term interest rate is defined as the instantaneous interest rate at time t, that is,

rt = lim
τ→0

R(rt, t, T ) = R(rt, t, t)

The instantaneous forward rate is given as

f(rt, t, T ) = −∂ ln(P (rt, t, T ))

∂T

Figure 8 shows the term structure of interest rates in the CIR model and three alternatives in

our model. We can see how our model adds flexibility as we can reflect different behaviours for the

term structure.
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Figure	8	shows	the	term	structure	of	interest	rates	in	the	CIR	model	and	
three	alternatives	in	our	model.	We	can	see	how	our	model	adds	flexibil-
ity	as	we	can	reflect	different	behaviours	for	the	term	structure.

For	 illustrative	purposes,	Figures	9	and	10	show	how	the	 term	struc-
ture	of	interest	rates	responds	to	changes	in	the	mean	reversion	speed	
and	volatility	 in	both	models.	 In	the	CIR	model,	 the	higher	the	speed	
of	mean	reversion,	the	higher	the	interest	rate	while,	in	our	model,	the	
lower	the	mean	reversion	speed,	the	flatter	the	term	structure.	Besides,	
in	our	model,	there	is	a	twist	in	the	pattern	due	to	the	cyclic	behaviour.	
In	Figure	10,	 for	both	models,	 the	higher	 the	volatility,	 the	 lower	 the	
term structure.

Figures	11	and	12	reflect	the	response	of	the	term	structure	of	interest	
rates	 to	 different	 values	 of	 the	mean	 reversion	 level	 in	 both	models.	
In	the	CIR	model,	 the	higher	the	mean	reversion	level,	 the	higher	the	
yield.	In	our	model,	it	is	harder	to	analyse	this	response	as	it	depends	on	
three	parameters.	Anyway,	we	observe	that	the	lower	the	amplitude,	the	
flatter	and	the	lower	the	term	structure.	When	changing	the	temporal	
frequency,	 it	 seems	 clear	 that	 the	 higher	 the	 temporal	 frequency,	 the	
more	humped	the	term	structure.	Finally,	for	different	offset	phases,	the	
curves	occasionally	crossover	each	other.
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Valuation of commodity deriVatiVes when spot 
prices reVert to a cyclical mean

In	this	section	we	analyse	the	commodity	market.	In	more	detail,	giv-
en	the	seasonal	behaviour	exhibited	by	most	commodities,	this	section	
introduces	a	 continuous-time	model	based	on	an	Ornstein-Uhlenbeck	
process	for	the	logarithm	of	the	commodity	spot	price,	with	a	reversion	
to	a	time	dependent	long-run	level,	the	time	variation	of	the	long-run	
price	level	being	characterized	by	a	Fourier	series.

Let St denote	 the	commodity	 spot	price	available	at	 time	 t.	 Then,	 the	
evolution	of	 the	 commodity	 spot	price,	St,	 is	 given	by	 the	 stochastic	
differential equation

For illustrative purposes, Figures 9 and 10 show how the term structure of interest rates responds

to changes in the mean reversion speed and volatility in both models. In the CIR model, the higher

the speed of mean reversion, the higher the interest rate while, in our model, the lower the mean

reversion speed, the flatter the term structure. Besides, in our model, there is a twist in the pattern

due to the cyclic behaviour. In Figure 10, for both models, the higher the volatility, the lower the

term structure.

Figures 11 and 12 reflect the response of the term structure of interest rates to different values of

the mean reversion level in both models. In the CIR model, the higher the mean reversion level, the

higher the yield. In our model, it is harder to analyse this response as it depends on three parameters.

Anyway, we observe that the lower the amplitude, the flatter and the lower the term structure. When

changing the temporal frequency, it seems clear that the higher the temporal frequency, the more

humped the term structure. Finally, for different offset phases, the curves occasionally crossover

each other.

4 Valuation of commodity derivatives when spot prices revert to

a cyclical mean

In this section we analyse the commodity market. In more detail, given the seasonal behaviour ex-

hibited by most commodities, this section introduces a continuous-time model based on an Ornstein-

Uhlenbeck process for the logarithm of the commodity spot price, with a reversion to a time depen-

dent long-run level, the time variation of the long-run price level being characterized by a Fourier

series.

Let St denote the commodity spot price available at time t. Then, the evolution of the commodity

spot price, St, is given by the stochastic differential equation

dSt = κ (f(t)− ln(St))Stdt+ σStdWt (26)

where κ, σ ∈ R
+ and Wt is a standard Wiener process. The main assumption made in this model

is that the mean reversion level, f(t), follows a time-dependent periodic function characterized by a

Fourier series, in more detail

f(t) =

∞∑

n=0

Re
[
Ane

inwt
]

where it is only considered the real part of the series since it is the part that makes economic

sense. Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail,

consider An = Ax,n + iAy,n where Ax,n, Ay,n ∈ R. Hence, Ax,n and Ay,n denote the amplitude

and phase of each term in the Fourier expansion, respectively. Note that this model nests model 1

presented in Schwartz (1997) by taking An = 0, ∀n ∈ N− {0}.

11
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consider An = Ax,n + iAy,n where Ax,n, Ay,n ∈ R. Hence, Ax,n and Ay,n denote the amplitude

and phase of each term in the Fourier expansion, respectively. Note that this model nests model 1

presented in Schwartz (1997) by taking An = 0, ∀n ∈ N− {0}.
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where	it	is	only	considered	the	real	part	of	the	series	since	it	is	the	part	
that	makes	economic	sense.	Note	that,	∀n | An ∈	C,	so	that	there	is	a	phase	
factor contained in An. In more detail, consider An = Ax,n + iAy,n where	Ax,n, 
Ay,n ∈	R.	Hence, Ax,n and Ay,n denote	the	amplitude	and	phase	of	each	term	
in	the	Fourier	expansion,	respectively.	Note	that	this	model	nests	model	1	
presented	in	Schwartz	(1997)	by	taking	An = 0, ∀n ∈ N − {0}.

Moreover, defining Xt = ln(St), assuming a constant market price of risk, 
that	is	Λ(St, t) = λ,	and	applying	Ito’s	Lemma,	the	log	price	can	be	rep-
resented	by	the	following	risk-neutral	process
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
σ2

2κ
− λσ

κ
(29)

g(t) =

∞∑

n=1

Re
[
Ane

inwt
]

(30)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
+σ

∫ s

t
e−κ(s−u)dW̃u

Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(31)

Ṽ [XT |Ft] = Ṽ

[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(32)
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity
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Xs = e−κ(s−t)Xt+
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)
α̃+

∞∑

n=1
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κ+ inw

(
einws − e−κ(s−t)+inwt

)]
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process
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where
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as
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)
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(
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)]
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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where	A0 ∈ R and W
~

t = Wt + λt is	a	standard	Wiener	process	under	the	
risk-neutral measure P

~
.

The	following	Proposition	establishes	the	solution	of	the	stochastic	dif-
ferential equation (27).

Proposition 5. The solution of the risk-neutral process followed by the 
logarithm of the commodity spot price is given as
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(31)
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)
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]
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
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κ+ inw

(
einws − e−κ(s−t)+inwt

)]
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∫ s
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e−κ(s−u)dW̃u

Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+
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Figure	13	presents	the	evolution	of	the	spot	price	time	series	for	four	
different	set	of	parameters.	In	the	first	graph	we	only	consider	the	drift	
process,	that	is	σ	=	0.	We	can	see	how	flexible	this	model	is,	in	fact,	any	
scenario	can	be	replicated	increasing	the	number	of	terms	in	the	Fourier	
expansion.	The	second	graph	considers	the	drift	and	diffusion	process,	
this	 representation	 presents	 a	 simulated	 spot	 price	 walk	 considering	
each	underlying	scenario.	For	illustrative	purposes,	Figures	14	and	15	
show	how	the	spot	price	responds	to	different	values	of	α~, κ, An,x, An,y, 
and ω	with	n = 1, σ = 0.
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From	Proposition	5,	 it	 is	clear	that	the	conditional	distribution	of	the	
logarithm	of	the	commodity	spot	price	at	time	T follows a normal distri-
bution	where	the	mean	and	variance	under	the	risk-neutral	probability	
measure P

~ are given as

Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
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)
α̃+
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
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n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
+σ

∫ s

t
e−κ(s−u)dW̃u

Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process
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where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as
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Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.
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Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (27)

where

µt = κ (α̃+ g(t)−Xt) (28)

α̃ = A0 −
σ2

2κ
− λσ

κ
(29)

g(t) =

∞∑

n=1

Re
[
Ane

inwt
]

(30)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (27).

Proposition 5 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
+σ

∫ s

t
e−κ(s−u)dW̃u

Figure 13 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 14 and 15

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 5, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(31)

Ṽ [XT |Ft] = Ṽ
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σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(32)
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Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(31)

Ṽ [XT |Ft] = Ṽ

[
σ
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t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u
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= σ2
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 (32)

where	we	have	applied	the	isometry	property	for	stochastic	integrals	in	
the	variance.

Since Xt = ln(St),	the	forward	price	of	a	commodity	maturing	at	time	T is 
a	straightforward	application	of	the	properties	of	the	log-normal	distri-
bution	under	the	risk-neutral	measure.	Hence,	the	following	proposition	
arises.

Proposition 6. Assuming a constant interest rate, the forward price of a 
commodity maturing at time T is given by

where we have applied the isometry property for stochastic integrals in the variance.

Since Xt = ln(St), the forward price of a commodity maturing at time T is a straightforward

application of the properties of the log-normal distribution under the risk-neutral measure. Hence,

the following proposition arises

Proposition 6 Assuming a constant interest rate, the forward price of a commodity maturing at

time T is given by

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}

= exp

{
e−κ(T−t) ln(St) +

(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)

+
∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]}

Alternatively,

ln(F (St, t, T )) = e−κ(T−t) ln(St) +
(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)

+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(33)

4.1 Option Pricing

This section focuses on option pricing. In more detail, we compute closed-form expressions for the

prices of European options written on the commodity and the forward commodity price under the

new model framework.

• European option on the commodity

Consider a call option maturing at time T with strike K, written on a commodity. Let

ct(St; t;T ;K) denote the price at time t of this call option. Then, the terminal condition

to this call option is given by

cT (ST ;T ;T ;K) = max{F (ST ;T ;T )−K; 0}

Hence, under the risk-neutral measure P̃ , the price at time t of this option will be given by

ct(St; t;T ;K) = Ẽ
[
e−r(T−t)(F (St; t;T )−K)+|Ft

]

The call option price is given by the following Proposition.

13

Alternatively,
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where we have applied the isometry property for stochastic integrals in the variance.
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F (St, t, T ) = Ẽ [ST |Ft] = exp

{
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[
e−r(T−t)(F (St; t;T )−K)+|Ft

]

The call option price is given by the following Proposition.

13

Hence,	under	the	risk-neutral	measure	P
~
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The	call	option	price	is	given	by	the	following	Proposition.

Proposition 7. The price at time t of a European call option with matu-
rity T written on a commodity is given by

Proposition 7 The price at time t of a European call option with maturity T written on a

commodity is given by

ct(St, t, T,K) = Ẽ
[
e−r(T−t)(ST −K)+|Ft

]

= e−r(T−t)

∫ ∞

−∞
(ST −K)+ρ(µ,Σ)dXT

= e−r(T−t)
[
eµ+

1
2
Σ2
Φ(d1)−KΦ(d2)

]

where ρ(µ,Σ) defines the normal density function and

µ = Ẽ[XT |Ft]

Σ = Ṽ [XT |Ft]

d1 =
µ+Σ2 − ln(K)

Σ
d2 = d1 − Σ

with Ẽ[XT |Ft] and Ṽ [XT |Ft] given by equation (31) and (32), respectively.

• European option on the commodity forward

Consider a European forward call option that matures at time T with strike K. If this option

is exercised, the call-holder pays K and receives a forward maturing at time s on a commodity.

Let ct(St; t;T ; s;K) denote the price at time t of this option. The terminal condition of this

option is given as

cT (ST ;T ; s;K) = max{F (ST ;T ; s)−K, 0}

Under the risk-neutral measure P̃ , the price at time t of this option is given as

ct(St; t;T ; s;K) = Ẽ
[
e−r(T−t)(F (ST ;T ; s)−K)+|Ft

]

Hence, the following proposition arises.

Proposition 8 The price at time t of a European forward call option with maturity T on a

forward contract expiring at time s written on a commodity is given by

c(St, t, T, s,K) = Ẽ
[
e−r(T−t)(F (ST , T, s)−K)+|Ft

]

= e−r(T−t)

∫ ∞

−∞
(F (ST , T, s)−K)+ρ(µ,Σ)dXT

= e−r(T−t)

[
exp

{
Ω+ µe−κ(s−T ) +

1

2
Σ2e−2κ(s−T )

}
Φ(d1)−KΦ(d2)

]

14



federico daniel platania
cu

ad
er

no
s 

de
 in

ve
st

ig
ac

ió
n 

u
ce

if
 16

/2
0

15

30

where	ρ(µ, Σ) defines the normal density function and
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Σ = Ṽ [XT |Ft]

d1 =
µ+Σ2 − ln(K)

Σ
d2 = d1 − Σ
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with E ̃[XT |Ft] and V ̃[XT |Ft ] given by equation (31) and (32), respectively.

European option on the commodity forward

Consider	a	European	forward	call	option	 that	matures	at	 time	T	with	
strike K.	If	this	option	is	exercised,	the	call-holder	pays	K and receives a 
forward maturing at time s on a commodity. Let ct (St; t; T; s; K) denote 
the	price	at	time	t	of	this	option.	The	terminal	condition	of	this	option	
is given as
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with Ẽ[XT |Ft] and Ṽ [XT |Ft] given by equation (31) and (32), respectively.

5 Conclusions

Characterizing the stochastic behaviour of interest rates and commodity prices constitute an issue

of special relevance for practitioners in financial markets and it has been deeply analysed in many

academic papers throughout the years. In this work we have introduced three different continuous-

time models allowing the underlying state variable to capture any possible seasonal or cyclical

behaviour.

Firstly, in section 2, we have presented a model for the term structure of interest rates assuming

that instantaneous spot rate converges to a certain time-dependent long term level that varies over

time according to a Fourier series. In section 3 we dig deeper into the term structure of interest rates

assuming that the spot rate follows a square-root process where both the mean reversion level and the

volatility parameter change over time as a sinusoidal function. Finally, given the seasonal behaviour

exhibited by most commodities, section 4 analyses the commodity market. In a similar fashion as in

section 2, we assume that the logarithm of the commodity spot price follows an Ornstein-Uhlenbeck

process with a reversion to a time dependent long-run level characterized by a Fourier series.

The results obtained have strong practical applications, each model fulfils a real necessity pro-

viding a powerful and simple tool for pricing and risk management purposes and should be of special

interest for traders, financial institutions, and risk managers.

15

where ρ(µ,Σ) denotes the normal density function and
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conclusions

Characterizing	the	stochastic	behaviour	of	interest	rates	and	commodity	
prices constitute an issue of special relevance for practitioners in finan-
cial	markets	and	it	has	been	deeply	analysed	in	many	academic	papers	
throughout	the	years.	In	this	work	we	have	introduced	three	different	
continuous-	time	models	allowing	the	underlying	state	variable	to	cap-
ture	any	possible	seasonal	or	cyclical	behaviour.

Firstly,	in	section	2,	we	have	presented	a	model	for	the	term	structure	
of	interest	rates	assuming	that	instantaneous	spot	rate	converges	to	a	
certain	time-dependent	long	term	level	that	varies	over	time	according	
to	a	Fourier	series.	In	section	3	we	dig	deeper	into	the	term	structure	of	
interest	rates	assuming	that	the	spot	rate	follows	a	square-root	process	
where	both	the	mean	reversion	level	and	the	volatility	parameter	change	
over	time	as	a	sinusoidal	function.	Finally,	given	the	seasonal	behaviour	
exhibited	by	most	commodities,	section	4	analyses	the	commodity	mar-
ket.	In	a	similar	fashion	as	in	section	2,	we	assume	that	the	logarithm	of	
the	commodity	spot	price	follows	an	Ornstein-Uhlenbeck	process	with	a	
reversion	to	a	time	dependent	long-run	level	characterized	by	a	Fourier	
series.

The	results	obtained	have	strong	practical	applications,	each	model	ful-
fils a real necessity providing a powerful and simple tool for pricing and 
risk	management	purposes	and	should	be	of	special	interest	for	traders,	
financial institutions, and risk managers.
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appendix of taBles

table 1: term structure models

Author(s) Model Specification

Merton (1973) dr = θdt + σdw θ, σ are constant

Vasicek (1977) dr = κ(θ − r)dt + σdw κ, θ, σ are constant

Cox et al. (1985) dr = κ(θ − r)dt + σ√rdw κ, θ, σ are constant
Chan	et al. (1992) dr = κ(θ − r)dt + σrγdw κ, θ, σ, γ are constant

Ho	and	Lee	(1986)	 dr = θt dt + σdw θt is time-varying and 
σ is constant

Black et al. (1990) d In(r) = [θt – σ't     ]dt + σtdwσt
θt, σt are time-varying

Hull	and	White	(1990,	
1993)

dr = κ(θt − r)dt + σtrγdw θt, σt are time-varying, 
γ = 0, 1/2

Black	and	Karasinski	
(1991)

dln(r) = φt [ln(µt) − ln(r)]dt + σtdw φt, µt are time-varying

Heath	et al. (1992) df = αtdt + σtdw f	is	the	forward	rate

Mercurio and Moraleda 
(2000)

dr = r [ηt − (λ −   
γ
  ) In(r)]dt + σrdw1+γt

ηt is time-varying and 
λ, γ, σ are constant

Brennan	and	Schwartz	
(1979)

dr = θr dt + σr1 dw1 + σr2 dw2 
dl = θl dt + σl1 dw1 + σl2 dw2 

θi, σij, i = r, l, j = 1,2 
are constant

Schaefer	and	Schwartz	
(1984)

ds = m(µ − s)dt + ηdw1

dl = (σ2 − ls)dt + σ√ldw2

m, µ, η, σ are constant

Longstaff	and	Schwartz	
(1992)

dx = (γ − δx)dt + √xdw1

dy = (η − vy)dt + √xdw2

γ, δ, η, v are constant

Duffie	and	Kan	(1996) dX1 = (b1 +Ʃ2
i =1

 a1iXi)dt + σ11√α1 + Ʃ2
i =1

 β1iXi dw1

dX2 = (b2 +Ʃ2
i =1

 a2iXi)dt + σ22√α2 + Ʃ2
i =1

 β2iXi dw2

Xi, i =	 1,	 2	 are	 the	
yields of two zero-
coupon bonds 

Chen	(1996) dr = κ(θ − r)dt + √σ√rdw1

dθ = ν(θ̂ − θ)dt + ς√θdw2

dσ = µ(σ̂ − σ)dt + η√σdw3

κ, ν, θ̂ , ς, µ, σ̂, η are 
constant
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appendix of fiGures

figure 1: simulation of the Zero-coupon bond price term structure for an arbi-
trary set of parameters
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Figure 1: Simulation of the Zero-coupon bond price term structure for an arbitrary set of parameters.

Parameter Values Vasicek Model:

Blue line: r0 = 0.02, α = 0.05, σ = 0.002, κ = 0.2.

Parameter Values Fourier Model :

Red line: r0 = 0.02, α = 0.05, σ = 0.0011, κ = 0.3397, ω = 20, n = 5, A1,x = 0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x =

0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655.

Green line: r0 = 0.02, α = 0.07, σ = 0.0005, κ = 0.018, ω = 0.48, n = 2, A1,x = −1.8, A1,y = 1, A2,x = 1.5, A2,y = −1.5.

Violet line: r0 = 0.02, α = 0.08, σ = 0.0002, κ = 0.02, ω = 0.25, n = 1, A1,x = 0.3, A1,y = 0.03

17

Parameter Values Vasicek Model:

Blue line: r0 = 0,02; α = 0,05; σ = 0,002; κ = 0,2. 

Parameter Values Fourier Model:

Red line: r0 = 0,02; α = 0,05; σ = 0,0011; κ = 0,3397; ω = 20; n = 5; A1,x = 0,1758; A1,y =	0,0402; 
A2,x = −0,3011; A2,y = 0,0172; A3,x =	0,0498;	A3, y = −0,1215; A4,x	= 0,0798; A4,y	= 0,1618; 
A5,x =	0,0894;	A5,y = 0,0655.

Green line: r0 = 0,02; α = 0,07; σ = 0,0005; κ = 0,018; ω	=	0,48; n = 2; A1,x = −1,8; A1,y = 1; 
A2,x = 1,5; A2,y = −1,5.

Violet line: r0 = 0,02; α = 0,08; σ = 0,0002; κ = 0,02; ω = 0,25; n = 1; A1,x = 0,3; A1,y = 0,03.
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Figure 2: Term Structure of Interest Rates for an arbitrary set of parameters.

Parameter Values Vasicek Model:

Blue line: r0 = 0.02, α = 0.05, σ = 0.002, κ = 0.2.

Parameter Values Fourier Model:

Red line: r0 = 0.02, α = 0.05, σ = 0.0011, κ = 0.3397, ω = 20, n = 5, A1,x = 0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x =

0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655.

Green line: r0 = 0.02, α = 0.07, σ = 0.0005, κ = 0.018, ω = 0.48, n = 2, A1,x = −1.8, A1,y = 1, A2,x = 1.5, A2,y = −1.5.

Violet line: r0 = 0.02, α = 0.08, σ = 0.0002, κ = 0.02, ω = 0.25, n = 1, A1,x = 0.3, A1,y = 0.03
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Parameter Values Vasicek Model:

Blue line: r0 = 0,02; α = 0,05; σ = 0,002; κ = 0,2. 

Parameter Values Fourier Model:

Red line: r0 = 0,02; α = 0,05; σ = 0,0011; κ = 0,3397; ω = 20; n = 5; A1,x = 0,1758; A1,y =	0,0402; 
A2,x = −0,3011; A2,y = 0,0172; A3,x =	0,0498;	A3, y = −0,1215; A4,x	= 0,0798; A4,y	= 0,1618; 
A5,x =	0,0894;	A5,y = 0,0655.

Green line: r0 = 0,02; α = 0,07; σ = 0,0005; κ = 0,018; ω	=	0,48; n = 2; A1,x = −1,8; A1,y = 1; 
A2,x = 1,5; A2,y = −1,5.

Violet line: r0 = 0,02; α = 0,08; σ = 0,0002; κ = 0,02; ω = 0,25; n = 1; A1,x = 0,3; A1,y = 0,03.



federico daniel platania
cu

ad
er

no
s 

de
 in

ve
st

ig
ac

ió
n 

u
ce

if
 16

/2
0

15

36

figure 3: term structure of interest rates for different values of the speed of 
mean reversion κ
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Figure 3: Term structure of interest rates for different values of the speed of mean reversion κ. In both models, the values of κ corresponding

to the curves from the top down are 0.6, 0.2, 0.1, 0.05, and 0.01, respectively.

Parameter Values Vasicek Model : r0 = 0.02, α = 0.05, σ = 0.0002.

Parameter Values Fourier Model : r0 = 0.02, α = 0.05, σ = 0.0002, ω = 0.20, n = 1, A1,x = 0.05, A1,y = −0.03.

19

In	both	models,	the	values	of	κ corresponding	to	the	curves	from	the	top	down	are	0,6;	0,2;	0,1;	
0,05 and 0,01 respectively

Parameter Values Vasicek Model : r0 = 0,02; α = 0,05; σ = 0,0002.

Parameter Values Fourier Model : r0 = 0,02; α = 0,05; σ = 0,0002; ω = 0,20; n = 1; A1,x = 0,05; 
A1,y = −0,03.
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Figure 4: Term structure of interest rates for different values of σ. In both models, the values of σ corresponding to the curves from the top

down are 0.0002, 0.002, 0.005, 0.007, and 0.009, respectively.

Parameter Values Vasicek Model : r0 = 0.02, α = 0.05, κ = 0.02.

Parameter Values Fourier Model : r0 = 0.02, α = 0.05, κ = 0.02, ω = 0.20, n = 1, A1,x = 0.05, A1,y = −0.03.

20

In	both	models,	 the	values	of	σ corresponding	 to	 the	curves	 from	 the	 top	down	are	0,0002;	
0,002; 0,005; 0,007 and 0,009 respectively

Parameter Values Vasicek Model: r0 = 0,02; α = 0,05; κ = 0,02.

Parameter Values Fourier Model: r0 = 0,02; α = 0,05; κ = 0,02; ω = 0,20; n = 1; A1,x = 0,05;  
A1,y = −0,03.
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figure 5: term structure of interest rates for different values of the mean 
reversion level α
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Figure 5: Term structure of interest rates for different values of the mean reversion level α. In both models, the values of α corresponding to

the curves from the top down are 0.05, 0.04, 0.03, 0.02, and 0.01, respectively.

Parameter Values Vasicek Model : r0 = 0.02, σ = 0.0002, κ = 0.02.

Parameter Values Fourier Model : r0 = 0.02, σ = 0.0002, κ = 0.02, ω = 0.20, n = 1, A1,x = 0.05, A1,y = −0.03.

21

In	both	models,	the	values	of	α corresponding	to	the	curves	from	the	top	down	are	0,05;	0,04;	
0,03; 0,02 and 0,01 respectively.

Parameter Values Vasicek Model : r0 = 0,02; σ = 0,0002; κ = 0,02.

Parameter Values Fourier Model : r0 = 0,02; σ = 0,0002; κ = 0,02; ω = 0,20; n = 1; A1,x = 0,05; 
A1,y = −0,03.
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Figure 6: Term structure of interest rates for different values of the Fourier parameters.

First Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.2, ω = 0.20, n = 1, A1,y = −0.03. and A1,x = −0.05;−0.005; 0; 0.005; 0.05.

Second Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.02, ω = 0.30, n = 1, A1,x = 0.05. and A1,y = −0.2;−0.02; 0; 0.02; 0.2.

Third Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.1, n = 1, A1,x = 0.05, A1,y = −0.03 and ω = 0.2; 0.25; 0.4; 0.5; 1.

22

First Graph: r0 = 0,02; α = 0,05; σ = 0,0002; κ = 0,2; ω = 0,20; n = 1; A1,y = −0,03; and A1,x = 
−0,05; −0,005; 0; 0,005; 0,05. 

Second Graph: r0 = 0,02, α = 0,05, σ = 0,0002, κ = 0,02, ω = 0,30, n = 1, A1,x = 0,05. and A1,y = 
−0,2; −0,02; 0; 0,02; 0,2. 

Third Graph: r0 = 0,02, α = 0,05, σ = 0,0002, κ = 0,1, n = 1, A1,x = 0,05, A1,y = −0,03 and ω = 0,2; 
0,25;	0,4;	0,5;	1.
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figure 7: simulation of the Zero-coupon bond price term structure for an arbitrary 
set of parameters
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Figure 7: Simulation of the Zero-coupon bond price term structure for an arbitrary set of parameters.

Parameter Values CIR Model:

Lightblue line: r0 = 0.015, θ = 0.1, σ = 0.005, κ = 0.1.

Parameter Values Cyclic Model :

Blue line: r0 = 0.015, Aθ = 0.2, Aσ = 0.001, κ = 0.1, ω = 0.08, ϕ = π, λ = 0.

Red line: r0 = 0.015, Aθ = 0.1, Aσ = 0.005, κ = 0.15, ω = 0.2, ϕ = π
2
, λ = 0.

Black line: r0 = 0.015, Aθ = 0.08, Aσ = 0.002, κ = 0.15, ω = 0.15, ϕ = π
4
, λ = 0.

Green line: r0 = 0.015, Aθ = 0.1, Aσ = 0.002, κ = 0.3, ω = 0.10, ϕ = π, λ = 0.

23

Parameter Values CIR Model:

Lightblue line: r0 = 0,015; θ = 0,1; σ = 0,005; κ = 0,1. 

Parameter Values Cyclic Model:

Blue line: r0 = 0,015; Aθ = 0,2; Aσ = 0,001; κ = 0,1; ω = 0,08; ϕ = π; λ = 0.

Red line: r0 = 0,015; Aθ = 0,1; Aσ = 0,005; κ = 0,15; ω = 0,2; ϕ = π/2; λ = 0.

Black line: r0 = 0,015; Aθ = 0,08; Aσ = 0,002; κ = 0,15; ω = 0,15; ϕ = π/4; λ = 0.

Green line: r0 = 0,015; Aθ = 0,1; Aσ = 0,002; κ = 0,3; ω = 0,10; ϕ = π; λ = 0.
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Figure 8: Term Structure of Interest Rates for an arbitrary set of parameters.

Parameter Values CIR Model:

Lightblue line: r0 = 0.015, θ = 0.1, σ = 0.005, κ = 0.1.

Parameter Values Cyclic Model :

Blue line: r0 = 0.015, Aθ = 0.2, Aσ = 0.001, κ = 0.1, ω = 0.08, ϕ = π, λ = 0.

Red line: r0 = 0.015, Aθ = 0.1, Aσ = 0.005, κ = 0.15, ω = 0.2, ϕ = π
2
, λ = 0.

Black line: r0 = 0.015, Aθ = 0.08, Aσ = 0.002, κ = 0.15, ω = 0.15, ϕ = π
4
, λ = 0.

Green line: r0 = 0.015, Aθ = 0.1, Aσ = 0.002, κ = 0.3, ω = 0.10, ϕ = π, λ = 0.
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Parameter Values CIR Model:
Lightblue line: r0 = 0,015; θ= 0,1; σ = 0,005; κ = 0,1

Parameter Values Cyclic Model:

Blue line: r0 = 0,015; Aθ = 0,2; Aσ = 0,001; κ = 0,1; ω = 0,08; ϕ = π; λ = 0.

Red line: r0 = 0,015; Aθ = 0,1; Aσ = 0,005; κ = 0,15; ω = 0,2; ϕ = π/2; λ = 0.

Black line: r0 = 0,015; Aθ = 0,08; Aσ = 0,002; κ = 0,15; ω = 0,15; ϕ = π/4; λ = 0.

Green line: r0 = 0,015; Aθ = 0,1; Aσ = 0,002; κ = 0,3; ω = 0,10; ϕ = π; λ = 0.
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figure 9: term structure of interest rates for different values of the speed of 
mean reversion κ
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Figure 9: Term structure of interest rates for different values of the speed of mean reversion κ. In both models, the values of κ are: Blue Line:

= 0.05, Lightblue Line: = 0.1, Black Line: = 0.2, Green Line: = 0.4, and Red Line:= 0.8;

Parameter Values CIR Model : r0 = 0.01, θ = 0.03, σ = 0.0002.

Parameter Values Cyclic Model : r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, ω = 0.20, ϕ = 0, λ = 0.

25

In	both	models,	the	values	of	κ are:

Blue Line: = 0,05; Lightblue Line: = 0,1; Black Line: = 0,2; Green Line:	=	0,4;	and	Red Line: = 0,8.

Parameter Values CIR Model: r0 = 0,01; θ= 0,03; σ = 0,0002.

Parameter Values Cyclic Model: r0 = 0,01; Aθ= 0,03; Aσ = 0,0002; ω = 0,20; ϕ = 0; λ = 0.
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Figure 10: Term structure of interest rates for different values of the volatility parameter. The values of σ and Aσ corresponding to CIR

and the Cyclic model, respectively, are: Blue Line: = 0.003, Lightblue Line: = 0.005, Black Line: = 0.007, Green Line: = 0.009, and Red

Line:= 0.011;

Parameter Values CIR Model : r0 = 0.01, θ = 0.05, κ = 0.05.

Parameter Values Cyclic Model : r0 = 0.01, Aθ = 0.05, κ = 0.05, ω = 0.08, ϕ = 0, λ = 0.

26

The	 values	 of	 σ and Aσ corresponding	 to	 CIR	 and	 the	 Cyclic	 model,	 respectively,	 are:	 
Blue Line: = 0,003; Lightblue Line: = 0,005; Black Line: = 0,007; Green Line: = 0,009; and Red 
Line:= 0,011.

Parameter Values CIR Model: r0 = 0,01; θ= 0,05; κ = 0,05.

Parameter Values Cyclic Model: r0 = 0,01; Aθ= 0,05; κ = 0,05; ω = 0,08; ϕ = 0; λ = 0.
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figure 11: term structure of interest rates for different values of the mean 
reversion level
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Figure 11: Term structure of interest rates for different values of the mean reversion level. The values of θ and Aθ corresponding to CIR and

the Cyclic model, respectively, are: Blue Line: = 0.05, Lightblue Line: = 0.04, Black Line: = 0.03, Green Line: = 0.02, and Red Line:= 0.01;

Parameter Values CIR Model : r0 = 0.01, σ = 0.0002, κ = 0.1.

Parameter Values Cyclic Model : r0 = 0.01, Aσ = 0.0002, κ = 0.1, ω = 0.1, ϕ = 0, λ = 0.
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The	values	of	θ and Aθ corresponding	to	CIR	and	the	Cyclic	model,	respectively,	are:	Blue Line: = 
0,05; Lightblue Line:	=	0,04; Black Line: = 0,03; Green Line: = 0,02; and Red Line:= 0,01.

Parameter Values CIR Model: r0 = 0,01; σ = 0,0002; κ = 0,1,
Parameter Values Cyclic Model: r0 = 0,01; Aσ = 0,0002; κ = 0,1; ω = 0,1; ϕ = 0; λ = 0.
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π

2
, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.

28

The	values	of	ω	in	the	first	graph	are:	Blue Line: = 0,05; Lightblue Line: = 0,1; Black Line: = 0,15; 
Green Line: = 0,2; and Red Line:= 0,5; and r0 = 0,01; Aθ = 0,03; Aσ = 0,0002; κ = 0,1; ϕ = 0; λ = 0.

The	values	of	ϕ	in	the	second	graph	are:	Blue Line: = 0, Lightblue Line: = 
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π

2
, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π
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, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π

2
, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π

2
, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.

28

. And r0 = 0,01, Aθ= 0,03, Aσ = 0,0002, κ = 0,1, ω = 0,2, λ = 0,
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figure 13: spot price time series simulation for an arbitrary set of parameters
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Figure 13: Spot price time series simulation for an arbitrary set of parameters. The first graph represents the drift process, that is setting

σ = 0. The second graph represents the whole process with σ = 0.2

Red line: α̃ = 1, κ = 0.5, An=1,x = 0.4, An=1,y = 0, An=3,x = 0, An=3,y = 0, ω = 1.5.

Black line: α̃ = 2, κ = 0.5, An=1,x = 1, An=1,y = π
2
, An=3,x = 0, An=3,y = 0, ω = 0.4.

Lightblue line: α̃ = 2, κ = 0.5, An=1,x = 0.8, An=1,y = 0, An=3,x = 0.4, An=3,y = 0, ω = 0.5.

Blue line: α̃ = 1.5, κ = 0.5, An=1,x = 0.6, An=1,y = 0, An=3,x = 0.5, An=3,y = 0, ω = 2

29

The	first	graph	represents	the	drift	process,	that	is	setting	σ	=	0,	The	second	graph	represents	
the	whole	process	with	σ = 0,2.

Red line: α̃ = 1; κ = 0,5; An=1,x =	0,4;	An=1,y = 0; An=3,x = 0; An=3,y = 0; ω = 1,5.

Black line: α̃ = 2; κ = 0,5; An=1,x = 1; An=1,y = 
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Figure 12: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green Line: = 0.2, and Red Line:= 0.5.

And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line: = π

2
, and Red Line:= 3π

4
. And

r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.

28

, An=3,x = 0; An=3,y = 0; ω	=	0,4.

Lightblue line: α̃ = 2; κ = 0,5; An=1,x = 0,8; An=1,y = 0; An=3,x	=	0,4;	An=3,y = 0; ω = 0,5.
Blue line:  α̃ = 1,5; κ = 0,5; An=1,x = 0,6; An=1,y = 0; An=3,x = 0,5; An=3,y = 0; ω = 2.
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and no diffusion process, σ = 0

1−year 2−years 3−years 4−years 5−years 6−years 7−years 8−years 9−years 10−years
0

2

4

6

8

10

12

14
Spot price time series vs mean reversion level alpha

C
om

m
od

ity
 P

ric
e

1−year 2−years 3−years 4−years 5−years 6−years 7−years 8−years 9−years 10−years
3

4

5

6

7

8

9

10

11

12
Spot price time series vs speed of mean reversion kappa

C
om

m
od

ity
 P

ric
e

Figure 14: Spot price time series simulation for an arbitrary set of parameters and no diffusion process, σ = 0. For both graphs: An=1,x =

0.8, An=1,y = 0, n = 1, ω = 0.5.

The first graph represents the spot price time series for κ = 0.5 and different values of α̃:

Red line: α̃ = 0.5, Violet line: α̃ = 1, Black line: α̃ = 1.5, Lightblue line: α̃ = 2, Blue line: α̃ = 2.5.

The second graph represents the spot price time series for α̃ = 2 and different values of κ:

Red line: κ = 0.1, Violet line: κ = 0.3, Black line: κ = 0.5, Lightblue line: κ = 0.7, Blue line: κ = 1.

30

For	both	graphs:	An=1,x = 0,8; An=1,y = 0; n = 1; ω = 0,5.

The	first	graph	represents	the	spot	price	time	series	for	κ = 0,5 and different values of α̃:

Red line: α̃ = 0,5; Violet line: α̃ = 1, Black line: α̃ = 1,5; Lightblue line:   α̃ = 2; Blue line: α̃ = 2.5.

The	second	graph	represents	the	spot	price	time	series	for	α̃ = 2 and different values of κ:

Red line: κ = 0,1; Violet line: κ = 0,3; Black line: κ = 0,5; Lightblue line: κ = 0,7; Blue line: κ = 1.
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figure 15: spot price time series simulation for an arbitrary set of parameters 
and no diffusion process, σ = 0
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Figure 15: Spot price time series simulation for an arbitrary set of parameters and no diffusion process, σ = 0. For the three graphs:

α̃ = 2, κ = 0.5, n = 1, σ = 0.

The first graph represents the spot price time series for An=1,y = 0, ω = 0.5 and different values of An=1,x:

Red line: An=1,x = 0.1, Violet line: An=1,x = 0.5, Black line: An=1,x = 0.8, Lightblue line: An=1,x = 1.2, Blue line: An=1,x = 2.

The second graph represents the spot price time series for An=1,x = 0.8, ω = 0.5 and different values of An=1,y:

Red line: An=1,y = −0.5, Violet line: An=1,y = −0.1, Black line: An=1,y = 0, Lightblue line: An=1,y = 0.1, Blue line: An=1,y = 0.5.

The third graph represents the spot price time series for An=1,x = 0.8, An=1,y = 0 and different values of ω:

Red line: ω = 0.1, Violet line: ω = 0.5, Black line: ω = 1, Lightblue line: ω = 2, Blue line: ω = π.

31

For	the	three	graphs:	α = 2; κ = 0,5; n = 1; σ = 0.

The	first	graph	represents	the	spot	price	time	series	for	An=1,y = 0; ω = 0,5 and different values 
of An=1,x :

Red line: An=1,x = 0,1; Violet line: An=1,x = 0,5; Black line: An=1,x = 0,8; Lightblue line: An=1,x 

= 1,2; Blue line: An=1,x = 2. 

The	second	graph	represents	 the	spot	price	 time	series	 for	An=1,x = 0,8; ω = 0,5 and different 
values of An=1,y :

Red line: An=1,y  = −0,5; Violet line: An=1,y = −0,1; Black line: An=1,y  = 0; Lightblue line: An=1,y  
= 0,1; Blue line: An=1,y  = 0,5.

The	third	graph	represents	the	spot	price	time	series	for	An=1,x = 0,8, An=1,y = 0 and different 
values of ω:

Red line: ω = 0,1; Violet line: ω = 0,5; Black line: ω = 1; Lightblue line: ω = 2; Blue line: 
ω = π.



Valuation of Derivative Assets under Cyclical Mean-Reversion Processes for Spot Prices

49

Cu
ad

er
no

s 
de

 In
ve

st
ig

ac
ió

n 
U

CE
IF

 16
/2

0
15

references

[1]	Black,	F.,	E.	Dermand	and	W.	Toy	 (1990).	A	One-Factor	Model	of	
Interest	Rates	and	its	Application	to	Treasury	Bond	Options.	Financial 
Analysts Journal,	46,	33-39.

[2]	Black,	F.	and	P.	Karasinski	 (1991).	Bond	and	Option	Pricing	when	
Short	Rates	are	Lognormal.	Financial Analysts Journal,	47,	52-59.

[3]	 Brennan,	M.J.	 and	 E.S.	 Schwartz	 (1979).	A	Continuous	 Time	Ap-
proach	 to	 the	 Pricing	 of	 Bonds.	 Journal of Banking and Finance, 3, 
133-155.

[4]	Brennan,	M.J.	and	E.S.	Schwartz	(1980).	Analyzing	Convertible	Se-
cirities. Journal of Financial and Quantitative Analysis,	15,	4,	907-929.

[5] Brigo, D. and F. Mercurio (2006). Interest Rate Models – Theory and 
Practice,	Springer-Verlag	Berlin	Heidelberg.

[6] Cartea, A. and M.G. Figueroa (2005). Pricing in Electricity Markets: a 
Mean	Reverting	Jump	Diffusion	Model	with	Seasonality,	Applied Math-
ematical Finance 12, 313-335.

[7]	Chan,	K.C.,	G.A.	Karolyi,	F.A.	Longstaff,	and	A.B.	Sanders	(1992).	An	
Empirical	Comparison	of	Alternative	Models	of	the	Short-Term	Interest	
Rate. Journal of Finance,	47,	3,	1209-1227.

[8]	 Chen,	 L.	 (1996).	 Interest Rate Dynamics, Derivatives Pricing, and 
Risk Management. Springer- Verlag, Berlin.

[9]	Cox,	J.C.,	J.E.	Ingersoll,	and	S.A.	Ross	(1985).	A	Theory	of	the	Term	
Structure of Interest Rates. Econometrica,	53,	2,	385-408.



federico daniel platania
cu

ad
er

no
s 

de
 in

ve
st

ig
ac

ió
n 

u
ce

if
 16

/2
0

15

50

[10]	Duffie,	D.	and	R.	Kan	(1996).	A	Yield-Factor	Model	of	Interest	Rates.	
Mathematical Finance,	6,	4,	379-406.

[11]	Feller,	W.	(1951).	Two	Singular	Diffusion	Problems.	Ann. Math.,	54,	
173-182.

[12] Filipovi´c, D. (2009). Term Structure Models – A Graduate Course, 
Springer-Verlag	Berlin	Hei-	delberg.

[13]	Gibson,	R.,	and	E.S.	Schwartz(1990).	Stochastic	Convenience	Yield	
and	the	Pricing	of	Oil	Contingent	Claims.	The Journal of Finance,	45:3,	
959-976	July	1990.

[14]	Heath,	D.,	R.	Jarrow,	and	A.	Morton	(1992).	Bond	Pricing	and	the	
Term	Structure	of	 Interest	Rates:	A	New	Methodology	 for	Contingent	
Claims Valuation. Econometrica, 60, 77-105.

[15]	Ho,	T.S.Y.	and	S.	Lee	(1986).	Term	Structure	Movements	and	Pricing	
Interest Rate Contingent Claims. Journal of Finance,	41,	5,	1011-1029.

[16]	Hull,	J.	and	A.	White	(1990).	Pricing	Interest-Rate-Derivative	Secu-
rities. Review of Financial Studies,	3,	4,	573–592.

[17]	Hull,	J.	and	A.	White	(1993).	One-Factor	Interest-Rate	Models	and	
the	Valuation	of	Interest-	Rate	Derivative	Securities,	Journal of Finan-
cial and Quantitative Analysis,	28,	2,	235-254.

[18]	 Longstaff,	 F.A.	 and	E.S.	 Schwartz	 (1992).	 Interest	Rate	Volatility	
and	the	Term	Structure:	A	Two-Factor	General	Equilibrium	Model.	Jour-
nal of Finance,	47,	4,	1259-1282.

[19]	 Lucía,	 J.	 and	 E.S.	 Schwartz	 (2002).	 Electricity	 prices	 and	 power	
derivatives:	Evidence	from	the	nordic	power	exchange.	Review of Deriv-
atives Research, 5:1 (2002), pp. 5-50.

[20]	Mercurio,	F.	and	J.M.	Moraleda	(2000).	An	Analytically	Tractable	
Interest	Rate	Model	with	Humped	Volatility.	European Journal of Oper-
ational Research,	120,	205-214.



Valuation of Derivative Assets under Cyclical Mean-Reversion Processes for Spot Prices

51

Cu
ad

er
no

s 
de

 In
ve

st
ig

ac
ió

n 
U

CE
IF

 16
/2

0
15[21] Merton,	R.C.	(1973).	Theory	of	Rational	Option	Pricing.	Bell Journal

of Economics and Man- agement Science,	4,	1,	141-183.

[22] Pilipovi´c, D. (1998). Energy Risk, Valuing and Managing Energy
Derivatives. Mc Graw-Hill, 1998.

[23] Schaefer,	S.M.	and	E.S.	Schwartz	(1984).	A	Two-Factor	Model	of	the
Term	Structure:	An	Approximate	Analytical	Solution.	Journal of Finan-
cial and Quantitative Analysis,	19,	4,	413-424.

[24] Schwartz,	E.S.	The	stochastic	behaviour	of	commodity	prices:	Im-
plications	 for	 valuation	 and	 hedging.	 The Journal of Finance, 52:3,
923-973,	July	1997.

[25] Schwartz,	 E.S.	 and	 J.	 Smith	 (2000),	 Short-Term	 Variations	 and
Long-Term	Dynamics	in	Com-	modity	Prices,	Management Science	46,
893-911.

[26] Vasicek,	 O.	 (1977).	 An	 Equilibrium	 Characterization	 of	 the	 Term
Structure. Journal of Finan- cial Economics, 5, 2, 177-188.

[27] Webber,	N.	and	J.	James	(2001).	Interest Rate Modelling: Financial
Engineering,	John	Wiley	&	Sons,	Ltd,	England.





diciembre 2015

Editorial
Universidad
Cantabria



This thesis studies the stochastic behaviour of interest rates and commodity 
prices, extending the existing literature by allowing the underlying state 
variable to capture any possible seasonal or cyclical behaviour. In the 
first chapter, we propose a new model for the term structure of interest 
rates assuming that the instantaneous spot rate converges to a cyclical 
long-term level characterized by a Fourier series. Under this framework, 
we derive analytical expressions for the valuation of bonds and several 
interest rate derivative assets. The second chapter introduces a new square-
root model for the yield curve where both the mean reversion level and the 
volatility are described by a harmonic oscillator. This model specification 
incorporates a good deal of flexibility preserving the analytical tractability. 
In the final chapter, we present a model for the logarithm of the commodity 
spot price with a reversion to a time dependent long-run level described 
by a Fourier series, obtaining closed-form expressions for a wide range of 
derivatives and study the fitting performance to market data.
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